基于LED反光杯系统的优化研究

吴铭扬, 张巧芬, 王桂棠, 吴黎明, 邓耀华

吴铭扬, 张巧芬, 王桂棠, 吴黎明, 邓耀华. 基于LED反光杯系统的优化研究[J]. 应用光学, 2024, 45(2): 329-336. DOI: 10.5768/JAO202445.0201008
引用本文: 吴铭扬, 张巧芬, 王桂棠, 吴黎明, 邓耀华. 基于LED反光杯系统的优化研究[J]. 应用光学, 2024, 45(2): 329-336. DOI: 10.5768/JAO202445.0201008
WU Mingyang, ZHANG Qiaofen, WANG Guitang, WU Liming, DENG Yaohua. Optimization research based on LED reflective cup system[J]. Journal of Applied Optics, 2024, 45(2): 329-336. DOI: 10.5768/JAO202445.0201008
Citation: WU Mingyang, ZHANG Qiaofen, WANG Guitang, WU Liming, DENG Yaohua. Optimization research based on LED reflective cup system[J]. Journal of Applied Optics, 2024, 45(2): 329-336. DOI: 10.5768/JAO202445.0201008

基于LED反光杯系统的优化研究

基金项目: 国家自然科学青年基金(61705045);佛山市2021年高校教师特色创新研究项目(2021DZXX15)
详细信息
    作者简介:

    吴铭扬(1999—),男,硕士研究生,主要从事非成像光学、机器视觉研究。E-mail:15915866646@163.com

    通讯作者:

    张巧芬(1982—),女,博士,副教授,主要从事非成像光学、非线性光学与光通信技术研究。E-mail:zhqf@gdut.edu.cn

  • 中图分类号: TN202;TM923.34

Optimization research based on LED reflective cup system

  • 摘要:

    在照明系统设计中,接收面的均匀照明以及光能的充分利用一直是光源设计急需解决的问题。目前在LED光源设计领域中,通常采用斯派罗法则分析和微分方程计算的方式进行照明效果优化,这些方式的优化层面较单一,周期长且误差较大。为了加强LED光源系统优化效率,同步提高光源系统的光照均匀度和能量利用率,论文提出了基于光照均匀度评价函数、能量利用率评价函数和综合性评价函数的优化设计算法。运用数值分析方法对单光源系统的反光杯第二面圆锥常数K与曲率半径R进行优化调整,实现整个反光杯光源系统的光照均匀度和能量利用率的同步优化。研究结果表明:利用该文算法优化后的系统比未优化的光源系统光照均匀度提高了14.2%,能量利用率提高了16.75%,与理想值的接近度提升了14.42%,验证了优化方法的可行性。在此基础上,论文进一步研究多光源系统阵列间距对系统光照均匀度和能量利用率的影响,得出光源阵列系统的最优阵列间距,在此间距下的光照均匀度与理想值的接近度为44.84%,能量利用率为88.84%,最终实现了光照均匀度和能量利用率均较好的矩形阵列光源系统。

    Abstract:

    In the design of lighting system, the uniform lighting of the receiving surface and the full use of light energy have always been urgent problems in the light source design. At present, in the field of LED light source design, the Sparrow Criterion analysis and differential equation calculation are usually used to optimize the lighting effect. The optimization level of these methods is relatively single, with a long cycle and a large error. In order to strengthen the optimization efficiency of the LED light source system and synchronously improve the illumination uniformity and energy utilization rate of the light source system, an optimization design algorithm based on the illumination uniformity evaluation function, energy utilization evaluation function and comprehensive evaluation function was was proposed. Firstly, the numerical analysis method was used to optimize and adjust the conical constant K and curvature radius R of the second side of the single light source system, so as to realize the synchronous optimization of the illumination uniformity and energy utilization rate of the whole reflective cup light source system. The study results show that the optimized system with the algorithm increased by 14.2%, the energy efficiency increased by 16.75%, and the proximity to the ideal value increased by 14.42%, which verifies the feasibility of the optimization method. On this basis, the influence of multi-light source system array spacing for illumination uniformity and energy utilization system was further studied, the optimal array spacing of light source array system, under the distance of the illumination uniformity and the ideal value proximity is 44.84%, energy utilization rate is 88.84%, finally achieving a LED light system in rectangular array with high uniformity and energy utilization.

  • 照明系统对于机器视觉系统[1]中图像的获取起着关键性的作用,发光二极管(light-emitting diode, LED)由于具有寿命长、成本低、效率高和可控性等优点[2],目前已经成为第四代新光源[3],被人们广泛应用到机器视觉照明[4]和道路照明中,光源的光照效果与能量利用率[5]也成为人们关注的热点。LED光源属于朗伯光源[6],其发光光束角2θ1/2为120°,由于发光角度过大,光束汇聚率较低[7],从而导致光束相应照射接收面上的光照均匀度[8]与能量利用率较低[9]。针对此类问题,夏勋力等人提出了一种LED朗伯光源光型模型封装方法[10];王海洋等人研究了反光杯对于LED光源光束准直的特点[11];樊冬新等人采用拓展光源的发光二极管反光杯实现能量的重新分配[12]。在目前的二次光学设计中,光学系统主要分为由透镜[13]或反光杯[14]构成的两种主要系统模型[15]。透镜[16]作为主要的配光元件[17],已经进行了大量的研究和展示,但使用效果并不太理想。相比于透镜来说,反光杯的光源消耗更少、成本更低、加工方便,因此,采用反光杯结构实现照明更方便、高效[18-19]

    目前针对LED光源系统[20]的设计,大部分研究都是运用斯派罗法则分析[21]与和微分方程计算[22]的方法优化,再通过研究光照分析图得到最优实验光照结果,这些方法普遍存在优化层面单一、周期长和误差较大等问题。针对这些问题,本文将设置特定的评价函数指标,运用数值分析原理将光源优化问题转换为评价函数量化问题,将快速、准确、高效地实现二次光学器件光照均匀度与能量利用率的同步优化。

    论文首先对单个LED光源系统进行优化设计,同时考虑在实际照明应用中,单颗LED光源的光照强度不能满足实际应用要求,进一步对双光源系统进行优化设计。实验结果表明,在多光源系统中,光源间排列的间隔严重影响了接收面上光斑均匀度与光源能量利用率,通过设置评价函数对间距进行优化,最终在接收面实现了多LED光源照明系统的高照均匀度和高能量利用率。

    LED光学照明系统主要采用反光杯与透镜两种方式。反光杯主要对光束起反射效果,通常应用于准直光束或聚光照明等,如照明手电、无影灯、望远镜等。反光杯发射出的光照能量,能够对接收面上的均匀照度区域进行补偿,最终形成光照度均匀的光斑分布。同时反光杯具有较高的能量利用率,能够将LED芯片发射出来的光束尽可能地汇聚于接收面上。

    反光杯内部的光束存在反射和直射两种情况,直射的光束直接照射到接收面形成部分光斑,但此时的照度光斑并不均匀,需要经过反光杯第二面反射光束的补偿,才能形成光照均匀的光斑。因此,本文通过调节反光杯第二面的圆锥常数K与曲率半径R对反光杯进行优化建模,在照明接收面获取高光照均匀度和高能量利用率。图1为反光杯示意图。反光杯抛物线方程可表示为[23]

    $$ H=a{\phi }^{2}/4+c $$ (1)

    式中:$a = (2H+\sqrt{4{H}^{2}+{\phi }^{2}})/{\phi }^{2}$;$c = (2H- \sqrt{4{H}^{2}+{\phi }^{2}})/4$;$\phi$和$ H $分别为反光杯的口径和高度。光源芯片位于坐标原点处,由光源发出的光线通过反光杯的第二面参数来决定反射光线的数量与其在接收面上的补偿效果。

    图  1  反光杯示意图
    Figure  1.  Schematic diagram of reflective cup

    反光杯通过其第二面曲面对内部放置光源发射出的光束进行反射汇聚,在不同的二次曲面下(K值不同),对于光源光束的作用效果大为不同。当圆锥常数K=0时,轨迹表示为点;当0<K<1时,表示为椭圆曲线;当K=1时,表示为抛物线曲线;当K>1时,表示为双曲线。相对于其他二次曲面,抛物面的汇聚能力比较强。因此,本文假设反光杯第二面曲面为抛物面,即K=−1。同时,当反光杯第二面为抛物面时,光源应放在此抛物面的焦点处,这样才能使光源的能量利用率较高。由于抛物面的曲率半径R是焦距f的2倍[24],即:

    $$ R=2f $$ (2)

    因此,可以通过抛物面半径R快速计算出抛物面焦距f。本文设定光照度评价函数和能量利用率评价函数对优化的光学系统效果进行更精确的评价。具体评价函数表示如下:

    光照均匀度评价函数:光照均匀度=最大光照度值/平均光照度值(Uniformity = Maximum / Average);能量利用率评价函数:能量利用率=总光通量/发射光通量(the-tput为接收面上能量利用率的值);综合评价函数:综合评价函数值=(1−能量利用率)+光照均匀度(the-merit-function = (1− the-tput ) + Uniformity)。

    当光源光线经反光杯传输时,光照均匀度评价函数值越接近1,其接收面上光照均匀度越高,与理想均匀度越接近;当光线从光源发出后,到达接收面上的光线数量越多,其能量利用率越高,能量利用率评价函数值越大;综合评价函数用于同时评估光照均匀度与能量利用率,当输出均匀度和损耗光能效率之和最小时,此时综合评价函数值最小,得出此时光照均匀度与能量利用率达到最优状态。设定的评价函数适用于单光源反光杯的优化与多光源下的间距优化。在进行优化设计时,采用Cree公司XLamp XP-E LED系列的White5000-10000K,用一块半径和厚度分别为35 mm、1 mm的圆形几何体来模拟LED发光芯片。光线追迹数量选取为500 000条,建立的反光杯模型厚度为1 mm,内壁设置为perfect mirror,是一个理想的反光镜。

    对于照明系统而言,照明目标的光照均匀度、亮度大小、能量利用率及生产成本等因素是设计时必须考虑的,同时光照范围也是体现一个照明系统最为重要的一个环节。在反光杯光源系统中,光照范围S与反光杯的高度H和出射角θ存在一定的关系[25],即:

    $$ R=H\mathrm{t}\mathrm{a}\mathrm{n}\theta $$ (3)

    在反光杯高度不变的前提下,可以通过改变θ角来控制接收面范围R的大小。然而,由于LED的空间光强是满足近似的朗伯分布,这部分光线在照明接收面上形成了照度随出射角θ增加而逐渐降低的分布。因此,如果要在接收面照明范围内获得均匀分布的照度,可以通过调整反光杯反射部分的光,对接收面直射部分的光进行补偿。对此,我们将采用通过改变反光杯的形状,对LED光源发出的光线进行定向优化设计处理,即优化设计反光杯第二面圆锥常数K和曲率半径R,达到需要的效果。

    光源系统仿真模拟图如图2所示。当单个LED照明光源距离照明接收面超过一定范围时,可采用单独发光芯片取代整个光照元器件发光,在整个光学照明系统进行光线追迹过程中,并不会对结果产生影响。

    图  2  光源系统仿真模拟图
    Figure  2.  Simulation diagram of light source system

    在仿真过程中,对于光源的摆放位置,反光杯第一面不改变光路,因此第一面的二次曲面常数和曲率半径一般设定为0,即K=R=0。反光杯的第二面会对光线进行反射汇聚,对接收面的中心光斑进行均匀性补充。假设反光杯的二次曲面系数K=−1,即反光杯为抛物面,曲率半径R=33 mm。设置接收面为半径1700 mm、厚度1 mm的圆形几何体,与光源距离Z=3 000 mm。通过采用Monte Carlo算法的离散分布光线追迹技术原理进行模拟实验的搭建,基于能量利用率评价函数和光照均匀度特定评价函数的数值分析计算得到能量利用率为83.25 %,光照均匀度为3.29。优化前的仿真模型图如图3所示。光线由光源芯片发出,经反光杯反射传播,到达接收面上。优化前接收面获得的照度图和坎德拉光强图如图4所示。

    图  3  优化前仿真模型图
    Figure  3.  Simulation model before optimization

    图4可知,LED光源发射的大部分光线都汇聚在接收面中心部分区域,造成接收面中心与四周的光照强度差距较大,产生较差的视觉感受。通过我们设定的特定评价函数计算得出光照均匀度评价函数值为3.29,远大于照明均匀度理想值1。此时照明均匀度与理想值的接近度为1/3.29≈30.4 %。在此基础上,若要提高照明均匀度,则需结合特定评价函数指标进行数值量化分析。以反光杯二次曲面常数K和曲率半径R为变量,在2个变量同时改变的情况下,计算出光照均匀度和能量利用率均为最优 。

    图  4  优化前接收面获得的照度图和光强图
    Figure  4.  Illumination diagram and light intensity diagram obtained from receiving surface before optimization

    在初始优化取值时,通常情况下二次曲面常数K取−1,曲率半径R取33 mm。因此在优化过程中,在二次曲面常数K为−0.9~−1.1,曲率半径R为32 mm~34 mm范围内进行优化仿真,判断在此范围内接收面上照度均匀度和能量利用率为最优解时的K值与R值。

    优化数据统计表见表1所示。表1展示了二次曲面常数K和曲率半径R取不同值时,得到的接收面光照均匀度评价函数值(Uniformity)、能量利用率评价函数值(tput)和综合评价函数值(the-merit-function)等。通过设定特定评价函数为主要分析依据,在一定范围内以反光杯二次曲面常数K和曲率半径R为具体变量进行数值优化分析,可同时得到最优的光照均匀度和能量利用率。此时光照均匀度评价函数值Uniformity = 2.24,与理想值的接近度为44.6%,与优化前相比均匀度提高14.2%,能量利用率提升了16.75%。优化后接收面获得的照度图和坎德拉光强图如图5所示。

    表  1  优化数据统计表
    Table  1.  Optimization data statistics
    综合评价
    函数值
    光照均匀度
    评价函数值
    能量利用率
    评价函数值
    曲率半径/mm圆锥常数最优曲率
    半径/mm
    最优圆锥常数最优综合
    评价函数值
    2.240 92.240 9132−0.932−0.92.240 9
    3.153 93.050 80.896832−0.966 732−0.92.240 9
    3.562 73.370 30.807632−1.033 332−0.92.240 9
    3.865 23.607 20.741932−1.132−0.92.240 9
    2.270 22.268 30.998032.666 7−0.932−0.92.240 9
    3.180 83.066 30.885432.666 7−0.966 732−0.92.240 9
    3.613 73.411 70.797932.666 7−1.033 332−0.92.240 9
    3.906 03.640 20.734132.666 7−1.132−0.92.240 9
    2.322 32.313 10.990833.333 3−0.932−0.92.240 9
    3.200 83.074 60.873933.333 3−0.966 732−0.92.240 9
    3.652 63.441 10.788533.333 3−1.033 332−0.92.240 9
    3.927 23.653 40.726233.333 3−1.132−0.92.240 9
    2.383 82.363 60.979834−0.932−0.92.240 9
    3.246 33.109 10.862734−0.966 732−0.92.240 9
    3.673 83.453 20.779534−1.033 332−0.92.240 9
    3.924 83.643 30.718434−1.132−0.92.240 9
    下载: 导出CSV 
    | 显示表格
    图  5  优化后接收面获得的照度图和光强图
    Figure  5.  Illumination diagram and light intensity diagram obtained from receiving surface after optimization

    由于在实际场景运用中,单颗LED光源的功率较低,发射光亮度较低,不能满足实际场景的使用要求,因此需要多颗LED光源进行阵列排布,形成大功率的集成光源,以满足所需要的照明效果。但是,2个及2个以上的LED光源在排列分布时,往往由于间距把握不好,导致光照均匀度较低或能量利用率不足。因此,本文进一步对双光源系统进行了优化设计。根据单光源系统的优化结果,反光杯第一面K=R=0,第二面K=−0.9、R=32 mm。2个光源初始间距为1 mm,优化的间距范围lgap取1 mm~1 500 mm。以50 mm作为间隔进行自动优化,由系统自动计算出接收面在每个间隔下的光照均匀度和能量利用率,并进行数据对比,优化出较高光照均匀度和能量利用率的光源间隔。双光源间距优化仿真图如图6所示。

    图  6  双光源间距优化仿真图
    Figure  6.  Simulation diagram of spacing optimization of dual-light sources

    图7为光源间距优化图。图7显示了双光源在不同间距下光照均匀度评价函数和能量利用率评价函数的大小。从图7可以看出,当光源以间距lgap = 1 050 mm进行分布排列时,可实现最优的光照均匀度和能量利用率,光照均匀度Uniformity = 2.23,与理想值的接近度为44.84 %,能量利用率Rtput = 88.84 %。

    图  7  光源间距优化图
    Figure  7.  Optimization diagram of light source spacing

    根据在单光源系统优化和双光源系统优化基础上获得的最优参数,构建出同时获得最优光照均匀度和能量利用率的阵列式光源系统。选取矩型阵列式光源系统为测试对象,构建一个3×3的矩形阵列式光源系统。根据单光源系统和双光源系统的优化结果,反光杯第一面K=R=0,第二面K=−0.9、R=32 mm,光源之间间隔lgsp=1 050 mm。由系统计算出在此最优参数基础上接收面的光照均匀度和能量利用率。矩形阵列式光源系统仿真图如图8所示。

    图  8  矩形阵列光源系统仿真图
    Figure  8.  Simulation diagram of rectangular array light source system

    图9为矩形阵列式光源系统接收面获得的照度图和光照强度图。从图9可以看出,通过优化,矩形阵列式光源系统获得了良好的光照均匀度和能量利用率,接收面照明区域的照度曲线居高且平稳,其中光照均匀度Uniformity = 2.88,与理想值的接近度为34.72%,能量利用率Rtput = 90.64%。整体阵列光源系统的光学性能在一定程度上均达到较好的效果。

    图  9  矩形阵列式光源系统接收面获得的照度图和光强图
    Figure  9.  Illumination diagram and light intensity diagram obtained from receiving surface of rectangular array light source system

    本文通过设定相应综合评价函数,运用数值分析方法,将光源系统的优化问题转变为评价函数的量化问题,实现光源系统在光照均匀度和能量利用率等方面的同步优化。利用设定光照均匀度评价函数、能量利用率评价函数和综合评价函数等相关特定函数计算光照均匀性和能量利用率,运用数值分析方法对反光杯第二面圆锥常数和曲率半径进行优化调整,实现了单光源反光杯系统的较高照明均匀性和能量利用率。将所优化的光学系统进行仿真验证,并将优化完成的光学系统与传统方式的优化系统进行比较,结果表明,光照均匀度提高了14.2%,与理想值的接近度提高了14.42%,能量利用率提高了16.75%,证明了特定评价函数优化方法的可行性、准确性和高效性。同时将此优化方法运用到多光源系统,以特定评价函数为基础,光源间距为主要变量,优化得出多光源系统的光照均匀度为 2.23,与理想值的接近度为44.84%,能量利用率为 88.84%。证明了特定评价函数优化方法在不同条件下的有效性,可以针对性地对单光源系统和多光源系统进行效果优化,提高了光源系统的性能。最后,在优化完成光源系统并得出最优相关参数的基础上,构建出矩形阵列式光源系统,进一步证明了特定评价函数在阵列式光源系统中的优化可行性,使大功率阵列式光源在光照均匀度和能量利用率方面得以优化提升,显著提升了大功率阵列式光源系统的整体性能效果。

  • 图  1   反光杯示意图

    Figure  1.   Schematic diagram of reflective cup

    图  2   光源系统仿真模拟图

    Figure  2.   Simulation diagram of light source system

    图  3   优化前仿真模型图

    Figure  3.   Simulation model before optimization

    图  4   优化前接收面获得的照度图和光强图

    Figure  4.   Illumination diagram and light intensity diagram obtained from receiving surface before optimization

    图  5   优化后接收面获得的照度图和光强图

    Figure  5.   Illumination diagram and light intensity diagram obtained from receiving surface after optimization

    图  6   双光源间距优化仿真图

    Figure  6.   Simulation diagram of spacing optimization of dual-light sources

    图  7   光源间距优化图

    Figure  7.   Optimization diagram of light source spacing

    图  8   矩形阵列光源系统仿真图

    Figure  8.   Simulation diagram of rectangular array light source system

    图  9   矩形阵列式光源系统接收面获得的照度图和光强图

    Figure  9.   Illumination diagram and light intensity diagram obtained from receiving surface of rectangular array light source system

    表  1   优化数据统计表

    Table  1   Optimization data statistics

    综合评价
    函数值
    光照均匀度
    评价函数值
    能量利用率
    评价函数值
    曲率半径/mm圆锥常数最优曲率
    半径/mm
    最优圆锥常数最优综合
    评价函数值
    2.240 92.240 9132−0.932−0.92.240 9
    3.153 93.050 80.896832−0.966 732−0.92.240 9
    3.562 73.370 30.807632−1.033 332−0.92.240 9
    3.865 23.607 20.741932−1.132−0.92.240 9
    2.270 22.268 30.998032.666 7−0.932−0.92.240 9
    3.180 83.066 30.885432.666 7−0.966 732−0.92.240 9
    3.613 73.411 70.797932.666 7−1.033 332−0.92.240 9
    3.906 03.640 20.734132.666 7−1.132−0.92.240 9
    2.322 32.313 10.990833.333 3−0.932−0.92.240 9
    3.200 83.074 60.873933.333 3−0.966 732−0.92.240 9
    3.652 63.441 10.788533.333 3−1.033 332−0.92.240 9
    3.927 23.653 40.726233.333 3−1.132−0.92.240 9
    2.383 82.363 60.979834−0.932−0.92.240 9
    3.246 33.109 10.862734−0.966 732−0.92.240 9
    3.673 83.453 20.779534−1.033 332−0.92.240 9
    3.924 83.643 30.718434−1.132−0.92.240 9
    下载: 导出CSV
  • [1] 明振兴, 吕清花, 明月, 等. 基于改进粒子群算法的LED光源阵列优化[J]. 应用光学,2022,43(3):524-531. doi: 10.5768/JAO202243.0305003

    MING Zhenxing, LYU Qinghua, MING Yue, et al. Optimization of the LED light source array based on an improved particle swarm algorithm[J]. Journal of Applied Optics,2022,43(3):524-531. doi: 10.5768/JAO202243.0305003

    [2] 周彦辰, 郭亮, 陈志涛, 等. 基于全内反射结构的多自由曲面准直透镜设计[J]. 光学学报,2021,41(4):186-194.

    ZHOU Yanchen, GUO Liang, CHEN Zhitao, et al. Design of multi-free surface collimation lens based on full internal reflection structure[J]. Acta Optica Sinica,2021,41(4):186-194.

    [3] 黄日带. 大功率LED灯在体育建筑照明中的应用[J]. 照明工程学报,2020,31(1):83-86. doi: 10.3969/j.issn.1004-440X.2020.01.015

    HUANG Ridai. Application of high-power LED lamp in sports building lighting[J]. China Illuminating Engineering Journal,2020,31(1):83-86. doi: 10.3969/j.issn.1004-440X.2020.01.015

    [4] 张勇, 刘卫平, 马飒飒, 等. 大视场低照度夜视头戴目镜光学系统设计[J]. 应用光学,2023,44(3):636-642. doi: 10.5768/JAO202344.0304002

    ZHANG Yong, LIU Weiping, MA Sasa, et al. Design of eyeoptical system for large field and low illumination[J]. Journal of Applied Optics,2023,44(3):636-642. doi: 10.5768/JAO202344.0304002

    [5] 杨超, 宋国华, 范婷婷, 等. 针对LED扩展光源照明的自由曲面透镜设计[J]. 光学技术,2022,48(2):129-134. doi: 10.3321/j.issn.1002-1582.2022.2.gxjs202202001

    YANG Chao, SONG Guohua, FAN Tingting, et al. Freeform lens design for LED extended light source illumination[J]. Optical Technology,2022,48(2):129-134. doi: 10.3321/j.issn.1002-1582.2022.2.gxjs202202001

    [6]

    BAI J, LI X, HU L, et al. Research on illumination uniformity in edible mushrooms incubator with genetic algorithm[J]. Optik,2021,239:166862. doi: 10.1016/j.ijleo.2021.166862

    [7] 刘晓茵, 杨磊, 杨童, 等. 微小球面显微光学系统设计与照明分析[J]. 应用光学,2023,44(2):262-267. doi: 10.5768/JAO202344.0201004

    LIU Xiaoyin, YANG Lei, YANG Tong, et al. Design and illumination analysis[J]. Journal of Applied optics,2023,44(2):262-267. doi: 10.5768/JAO202344.0201004

    [8] 甘勇, 贾崔赟. 基于TracePro的发光二极管均匀照明光源设计[J]. 科学技术与工程,2020,20(31):12808-12813. doi: 10.3969/j.issn.1671-1815.2020.31.019

    GAN Yong, JIA Cuiyun. Design of luminous diode uniform illumination light source based on TracePro[J]. Advanced Engineering Science,2020,20(31):12808-12813. doi: 10.3969/j.issn.1671-1815.2020.31.019

    [9]

    ZHANG Q, GAO J, CHEN X. Influence of optical aspheric parameters on obtaining uniform rectangular illumination[J]. Optik,2014,125(11):2577-2581. doi: 10.1016/j.ijleo.2013.11.017

    [10] 夏勋力, 余彬海, 麦镇强. 近朗伯光型LED透镜的光学设计[J]. 光电技术应用,2010,25(1):22-25. doi: 10.3969/j.issn.1673-1255.2010.01.007

    XIA Xunli, YU Binhai, MAI Zhenqiang. Optical design of a near-Lambert light-type LED lens[J]. Application of Photoelectric Technology,2010,25(1):22-25. doi: 10.3969/j.issn.1673-1255.2010.01.007

    [11] 王海洋, 金志樑, 王沛沛, 等. 用于LED光源的反光杯准直效果研究[J]. 照明工程学报,2021,32(1):1-4. doi: 10.3969/j.issn.1004-440X.2021.01.016

    WANG Haiyang, JIN Zhiliang, WANG Peipei, et al. Study on the collimation effect of reflective cup used for LED light source[J]. China Illuminating Engineering Journal,2021,32(1):1-4. doi: 10.3969/j.issn.1004-440X.2021.01.016

    [12] 樊冬新, 刘鹏辉, 葛聪聪, 等. 用于拓展光源的发光二极管反光杯的设计[J]. 唐山师范学院学报,2019,41(6):47-50. doi: 10.3969/j.issn.1009-9115.2019.06.012

    FAN Dongxin, LIU Penghui, GE Congcong, et al. Design of a light-emitting diode reflective cup for expanding the light source[J]. Journal of Tangshan Teachers College,2019,41(6):47-50. doi: 10.3969/j.issn.1009-9115.2019.06.012

    [13] 郭敬, 张玉杰. 基于遗传模拟退火算法的室内照明节能控制方法研究[J]. 应用光学,2022,43(5):879-885. doi: 10.5768/JAO202243.0502001

    GUO Jing, ZHANG Yujie. Research on the energy-saving control method of indoor lighting based on genetic simulation annealing algorithm[J]. Journal of Applied Optics,2022,43(5):879-885. doi: 10.5768/JAO202243.0502001

    [14] 王海洋, 金志樑, 王沛沛, 等. 用于LED准直的TIR透镜与反光杯效果研究[J]. 激光与光电子学进展,2021,58(19):320-325.

    WANG Haiyang, JIN Zhiliang, WANG Peipei, et al. Effect study of TIR lens and reflective glasses for LED collimation[J]. Laser & Optoelectronics Progress,2021,58(19):320-325.

    [15] 唐文婷, 张瑞, 陈宝瑨, 等. 一次透镜封装的单片集成LED光源[J]. 应用光学,2022,43(1):137-143. doi: 10.5768/JAO202243.0105003

    TANG Wenting, ZHANG Rui, CHEN Baojin, et al. Single lens integrated integrated LED light source[J]. Journal of Applied Optics,2022,43(1):137-143. doi: 10.5768/JAO202243.0105003

    [16]

    ZHANG Q F, GAO J, CHEN X. Simulation and optimization of reflection optical module design for single LED[J]. Optical and Quantum Electronics,2013,45(11):1179-1188. doi: 10.1007/s11082-013-9734-9

    [17] 余桂英, 金骥, 倪晓武, 等. 基于光学扩展量的LED均匀照明反射器的设计[J]. 光学学报,2009,29(8):2297-2301. doi: 10.3788/AOS20092908.2297

    YU Guiying, JIN Ji, NI Xiaowu, et al. Design of an LED uniform illumination reflector based on the optical extension volume[J]. Acta Optica Sinica,2009,29(8):2297-2301. doi: 10.3788/AOS20092908.2297

    [18]

    CAICEDO D, PANDHARIPANDE A, LEUS G. Occupancy-based illumination control of LED lighting systems[J]. Lighting Research & Technology,2011,43(2):217-234.

    [19]

    ZHANG Q F, GAO J, CHEN X, et al. Simulation and optimization of lens design for single light emitting diode[J]. Sensor Letters,2013,11(2):342-347. doi: 10.1166/sl.2013.2755

    [20] 卓宁泽, 张寅, 赵宝洲, 等. LED集成封装的一次光学设计与优化[J]. 光电工程,2013,40(3):129-134.

    ZHUO Ningze, ZHANG Yin, ZHAO Baozhou, et al. Primary optical design and optimization of the LED integrated package[J]. Photo-Electronic Engineering,2013,40(3):129-134.

    [21]

    MORENO I, AVENDANO-ALEJO M, TZONCHEV R I. Designing light-emitting diode arrays for uniform near-field irradiance[J]. Applied Optics,2006,45(10):2265-2272. doi: 10.1364/AO.45.002265

    [22]

    LUO X, LIU H, LU Z, et al. Automated optimization of an aspheric light-emitting diode lens for uniform illumination[J]. Applied Optics,2011,50(20):3412. doi: 10.1364/AO.50.003412

    [23] 周镇, 苏成悦, 付倩, 等. 一种基于自由曲面的LED准直透镜设计[J]. 应用光学,2012,33(6):1058-1062.

    ZHOU Zhen, SU Chengyue, FU Qian, et al. An LED collimation lens design based on a free surface[J]. Journal of Applied Optics,2012,33(6):1058-1062.

    [24]

    SUN J, ZHANG J W. Design of LED light source for uniform illumination in large area[J]. Applied Mechanics and Materials,2013,401/402/403:465-468.

    [25]

    MORENO I, TZONCHEV R I. Effects on illumination uniformity due to dilution on arrays of LEDs[C]. Bellingham WA: SPIE, 2004.

  • 期刊类型引用(2)

    1. 谢海峰,付秀华,董所涛,石澎,任松林,杜昕,王由德. 膜厚监控系统准直聚焦耦合光路的研制. 光学精密工程. 2025(01): 25-36 . 百度学术
    2. 何高放,林旭,范博阳,陈文帅,张彦扬,崔璟,陈宏瑾. 手电大核心LED反光杯设计方法研究. 轻工科技. 2024(06): 178-181 . 百度学术

    其他类型引用(1)

图(9)  /  表(1)
计量
  • 文章访问数:  147
  • HTML全文浏览量:  31
  • PDF下载量:  49
  • 被引次数: 3
出版历程
  • 收稿日期:  2023-05-14
  • 修回日期:  2023-08-28
  • 网络出版日期:  2024-01-31
  • 刊出日期:  2024-03-14

目录

/

返回文章
返回