激光损伤阈值测量装置同步触发模块研究

Research on synchronous trigger module of laser-induced damage threshold measurement device

  • 摘要: 损伤阈值测量装置是强激光技术的重要技术指标,主要用于强激光光学元件的研制和测试,而同步触发模块作为模块之间时序的控制器,是研制损伤阈值测量装置的关键技术之一。介绍了一种用于激光损伤阈值测量装置的同步触发模块及方法。设计了基于现场可编程门阵列(field programmable gate array,FPGA)为主控芯片的硬件方案,通过上位机操控软件设置同步触发参数,来控制各路输出同步信号的宽度和各路信号之间的时序,可极大提高同步触发的精度和效率。通过实验验证,同步脉冲信号之间的调节精度为2 ns,同步脉冲信号的最小宽度为10 ns,满足激光损伤阈值测量装置的要求。

     

    Abstract: The damage threshold measurement device is an important technical indicator of high-power laser technology, which is mainly used for the development and testing of high-power laser optical components. The synchronous trigger module serves as a controller for controlling the timing between modules, and is one of the key technologies in the development of damage threshold devices. A synchronous trigger module and method for laser damage threshold measurement device were introduced. A hardware solution based on field programmable gate array (FPGA) as the main control chip was designed. By setting synchronous trigger parameters through the upper computer control software, the width of each output synchronization signal and the timing between each signal were controlled, which could greatly improve the accuracy and efficiency of synchronous trigger. Through experimental verification, the adjustment accuracy between synchronous pulse signals is 2 ns, and the minimum width of synchronous pulse signals is 10 ns, which meets the needs of laser damage threshold measurement devices.

     

/

返回文章
返回