基于分数阶PID的连续变焦控制系统设计与实现

Design and implementation of continuous zoom control system based on fractional order PID controlleroller

  • 摘要: 连续变焦系统是一种能够进行连续视场变换的光电成像装置,可对目标进行连续探测和识别,具有快速、稳定的特点。针对其高精度,高稳定控制需求,提出一种分数阶PID(proportion integration differentiation)控制器设计方法,该方法利用内模控制策略构造含有3个整定参数的分数阶PID控制器,且这3个参数通过给定系统穿越频率和相位裕度获得,大大简化了分数阶PID控制器的设计,同时提高了控制器的可实现性。在Matlab平台同传统整数阶PID进行了控制效果对比,仿真结果表明:分数阶PID控制器将稳态误差由0.1 mm提升至0 mm,具有抗干扰性强、鲁棒性强、数字实现后无超调、静差小的特点。最后将数字分数阶PID应用于实际的连续变焦系统,系统可获得清晰稳定的图像,验证了控制策略的有效性。

     

    Abstract: Continuous zoom system is a kind of photoelectric imaging device that can switch the field of view, detect and identify the target, continuously. It is fast and stable. Aiming at its control requirements for high accuracy and stability , a design method of fractional-order PID controller based on internal mode control was proposed. The proposed controller has only 3 tuning parameters obtained from desired gain crossover frequency and phase margin. This method can greatly simplifies the design and improves the implementation of controller.The control effect was compared with the traditional integer order PID on Matlab.Simulation results show that the fractional order PID controller increases the steady-state error from 0.1 mm to 0 mm,it has the characteristics of strong anti-interference and robustness. In addition, there is no overshoot and no static error after digital realization. Finally, the digital fractional-order PID was applied to actual continuous zoom system, and the system can obtain clear and stable images, which verifies the effectiveness of the control strategy.

     

/

返回文章
返回