-
Abstract:
When the size of the detection target is small and is in the far distance, due to the small field of view of the photoelectric system, the effective pre-stage target guidance is the premise for the photoelectric system to track and point the target. The essence of target guidance is converting the target point under the geodetic coordinate system into the local coordinate system of the photoelectric system. Since a series of rotational and translational parameters will be introduced in this conversion process, the accuracy of these parameters will determine the ultimate target guidance accuracy. A guidance error correction method was proposed for the photoelectric system, namely acquisition-tracking-pointing (ATP) system, based on unmanned aerial vehicle (UAV) track, which used the track data around ATP system to solve optimal parameters for coordinate conversion in the process of computing target guidance data, thereby to improve the target guidance accuracy. Experimental device built for this project achieves the following results: the azimuth guidance standard variance is better than 0.052°, the elevation guidance standard variance is better than 0.04°, and the maximum error does not exceed 0.7°. The results also show that the higher the accuracy of pre-stage guidance, the faster the target acquisition speed of ATP system, which is of great significance for improving the corresponding speed of the target disposal.
-
Keywords:
- target guidance /
- guidance error /
- target detection
摘要:在探测目标尺寸小且距离远时,由于光电系统的视场角很小,有效的目标前级引导是光电系统跟瞄目标的前提。目标引导的本质是将大地坐标系下的目标点转换至光电系统局部坐标系下,转换过程中引入一系列旋转和平移参数,其准确程度决定了最终的目标引导精度。提出基于无人机航迹的光电系统引导误差校正方法,通过围绕光电系统周围无人机航迹数据,求解引导数据计算过程中坐标变换的最优参数,进而提高目标引导精度。在本项目搭建的实验装置上实现了方位引导标准方差小于0.052°,俯仰引导标准方差小于0.04°,最大误差不超过0.7°。目标前级引导的引导精度越高,光电系统捕获目标速度越快,对于提高目标处置相应速度具有重要意义。
-
-
[1] PENG Fulun, WANG Jing, WU Yilei, et al. Object positioning and error analysis of vehicular electro-optical reconnaissance system[J]. Journal of Applied Optics,2014,35(4):557-562.
[2] SUN Hui. Target localization and error analysis of airborne electro-optical platform[J]. Chinese Journal of Optics,2013,6(6):912-918. doi: 10.3788/co.20130606.0912
[3] TAN Ligang, DAI Ming, LIU Jinghong, et al. Error analysis of target automatic positioning for airborne photo-electric measuring device[J]. Optics and Precision Engineering,2013,21(12):3133-3140. doi: 10.3788/OPE.20132112.3133
[4] ZHANG Xingguo, HAN Tao, LI Jing. Guidance and implementation of photoelectric theodolite in shipborne environment[J]. Opto-Electronic Engineering,2017,44(5):511-515.
[5] YANG Hao, YOU Anqing, PAN Wenwu, et al. Reconstruction of 3D point cloud based on vehicle-borne LiDAR and research on roaming methods[J]. Journal of Terahertz Science and Electronic Information Technology,2015,13(4):579-583.
[6] TIAN Junlin, PAN Xudong, YOU Anqing. Computation and error analysis of target guiding data on motional platform[J]. High Power Laser and Particle Beams,2014,26(8):97-101. doi: 10.11884/HPLPB201426.081018
[7] ZHANG Hongliang, YU Xianguo, WANG Zi. Error analysis and optimal maneuver trajectory design of the point target location based on a moving visual platform[J]. Journal of National University of Defense Technology,2018,40(4):87-93. doi: 10.11887/j.cn.201804014
[8] YAN Ming, DU Pei, WANG Huilin, et al. Ground multi-target positioning algorithm for airborne optoelectronic system[J]. Journal of Applied Optics,2012,33(4):717-720.
[9] WANG Manlin, XIE Yun. Target positioning solution and error analysis of airborne pod[J]. Automation & Instrumentation,2022(11):255-257. doi: 10.14016/j.cnki.1001-9227.2022.11.255
[10] WANG Jiaqi, JIN Guang, YAN Changxiang. Orientation error analysis of airborne opto-electric tracking and measuring device[J]. Optics and Precision Engineering,2005,13(2):105-116.
[11] 江波, 梅超, 梁元庆, 等. 基于平面方程旋转变化方法的车载经纬仪测角误差修正[J]. 光学学报, 2015, 35(S1): s112002. JIANG Bo, MEI Chao, LIANG Yuanqing, et al. Angle measurement error correction of vehicle-borne theodolite based on the rotation of plane equation[J]. Acta Optica Sinica, 2015, 35(S1): s112002.
[12] 王芳. 光电经纬仪脱靶量和坐标动态修正[J].光学精密工程, 2009, 17(12): 2939-2945. WANG Fang. A novel universal tracking error correction model for photoelectric theodolites[J]. Optics and Precision Engineering, 2009, 17(12): 2939-2945.
[13] 闫海霞, 刘岩俊, 王东鹤. 光电经纬仪动态误差修正方法[J]. 红外与激光工程, 2014, 43(9): 3030-3035. YAN Haixia, LIU Yanjun, WANG Donghe. Correction method of dynamic error of optoelectronic theodolite[J]. Infrared and Laser Engineering, 2014, 43(9): 3030-3035.
[14] 韩光宇, 曹立华, 韩光照. 经纬仪定向误差变化的原因及解决方法[J]. 红外与激光工程, 2013, 42(3): 699-702. HAN Guangyu, CAO Lihua, HAN Guangzhao. Cause of varying of theodolite orientation error and its solution[J]. Infrared and Laser Engineering, 2013, 42(3): 699-702.
[15] 李彬, 丁亚林, 修吉宏, 等. 大倾角远距离航空成像的修正系统误差定位方法[J]. 光学精密工程, 2020, 28(6): 1265-1274. LI Bin, DING Yalin, XIU Jihong, et al. System error corrected ground target geo-location method for long-distance aviation imaging with large inclination angle[J]. Optics and Precision Engineering, 2020, 28(6): 1265-1274.
-
期刊类型引用(10)
1. 高克利,杨圆,颜湘莲,季严松,高凯,王劭菁. 基于双波段红外成像的六氟化硫气体泄漏定量检测技术研究. 电网技术. 2025(01): 167-176 . 百度学术
2. 马汝括,董杰,王雅湉,伊国鑫,丁祥浩,马乐. 基于神经网络的高寒地区CF_4和SF_6/CF_4检测. 中国电力. 2024(03): 103-112 . 百度学术
3. 卞正兰,缪小康,张桂林,初凤红,魏双娇,裴丹,孙义盛. 透射式光纤氢气传感系统构建与算法优化. 科学技术与工程. 2023(09): 3730-3737 . 百度学术
4. 刘宇,付乐乐,邹新海,崔巍,文丹丹. 基于RBF神经网络的MEMS惯性传感器误差补偿方法. 重庆理工大学学报(自然科学). 2021(01): 197-202 . 百度学术
5. 何满棠,周斌,吴树平. SF_6气体在线净化处理技术研究. 机械与电子. 2021(05): 34-39 . 百度学术
6. 马凤翔,袁小芳,程登峰,朱峰,赵跃. 基于红外吸收原理的SF_6气体泄漏检测技术应用研究. 电气技术. 2021(10): 51-56 . 百度学术
7. 郭磊,刘东钊,黄凤荣,于洪丽. 基于突触可塑性的自适应脉冲神经网络在高斯白噪声刺激下的抗扰功能研究(英文). 电工技术学报. 2020(02): 225-235 . 百度学术
8. 任丽君,马斌,刘国宏,高缨. 气体非色散红外传感器研究进展. 分析测试学报. 2020(07): 922-928 . 百度学术
9. 刘路民根,张耀宗,栾琳,洪汉玉. 一种基于形状的红外图像泄漏气体检测方法. 应用光学. 2019(03): 468-472 . 本站查看
10. 夏锋社,马登龙,谭帏,张晓明,王瑜,王晓桥. 基于传感器阵列动态响应可视化图谱的气体识别方法. 化工自动化及仪表. 2019(10): 800-805 . 百度学术
其他类型引用(5)