星载测风激光雷达355 nm光学鉴频器及闭环控制系统

355 nm optical frequency discriminator and closed-loop control system for spaceborne wind lidar

  • 摘要: 三通道355 nm光学鉴频器广泛应用在星载测风激光雷达回波信号鉴频过程中,是实现双边缘风速多普勒鉴频的核心元件,其指标与可靠性决定了系统的探测精度。研制了基于压电换能器(piezo-electric transducer, PZT)调谐的355 nm三通道标准具鉴频模块,模块有效口径35 mm,峰值透过率75%,自由光谱范围12.5 GHz,半高宽1.7 GHz。通过三通道测试系统对自由光谱范围、半高宽、峰值透过率、调谐系数等指标进行了测试。结果表明:当外部驱动电压为75 V时,峰值透过率分别为0.859、0.878和0.735,半高全宽分别为1.843 GHz、1.882 GHz和1.611 GHz,调谐系数为1.96 GHz/V、1.93 GHz/V和1.88 GHz/V。针对光学鉴频模块3个通道PZT调谐系数不一致的情况,分析出对风速误差的影响范围为±0.1 m/s。通过对闭环控制系统进行测试,该系统可实现对355 nm激光发射频率的实时锁定,解决了光学鉴频模块每次工作状态初始位置不一致带来的问题,提高了风速鉴频精度,可实现锁定时间长达30 min以上,满足了星载测风激光雷达的应用需求。另外,仿真研究表明:当三通道光学鉴频模块间隔变化0.08 nm时,引起的风速误差为1 m/s。

     

    Abstract: The three-channel 355 nm optical frequency discriminator is widely used in the frequency discrimination of the backscattered signal of the space-borne wind lidar, which is the core component to discriminate the wind speed Doppler frequency shift in the double-edge method, and its parameters and reliabilities determine the detection accuracy of the system. A 355 nm three-channel etalon module based on piezoelectric transducer (PZT) crystal tuning was developed, with the effective diameter of 35 mm, the peak transmittance of 75%, the free spectral range of 12.5 GHz, and the full width at half maximum of 1.7 GHz. Through the three-channel test system, the parameters including free spectral range, full width at half maximum, peak transmittance, and tuning coefficient were tested. The test results show that when the external driving voltage is 75 V, the peak transmittances of the three channels are 0.859, 0.878, and 0.735, respectively. The full width at half maximum is 1.843 GHz, 1.882 GHz, and 1.611 GHz, respectively. The tuning coefficients are 1.96 GHz/V, 1.93 GHz/V, 1.88 GHz/V, respectively. In view of the inconsistent tuning coefficients of three channels of the PZT crystal of the optical frequency discrimination module, the influence range of the analysis on the wind speed error is ±0.1m/s. Through the test of the closed-loop control system, the system can realize the real-time locking of the 355 nm laser emission frequency, solve the problems caused by the inconsistent initial position of the optical frequency discrimination module in each working state, improve the frequency discrimination of wind speed, and can achieve the stable locking time of more than 30 minutes, which meets the application requirements of space-borne wind lidar. Simulation studies show that when the interval of three-channel optical frequency discrimination module changes by 0.08 nm, the resulting wind speed error is 1 m/s.

     

/

返回文章
返回