某型机载反射式光学成像系统失调空中校正方法

Misalignment correction method of an airborne reflective imaging system in the sky

  • 摘要: 反射式高分辨力光学系统是未来机载望远系统的发展方向。当光学系统工作在航空平台,由于受温度变化、振动冲击等因素的影响,光学系统将存在失调误差,需要对其进行空中校正。建立了反射镜失调量与泽尼克(Zernike)系数之间的非线性函数数学模型,采用Bhattacharyya系数方法去除相关性强的失调量,减少空中装调的复杂程度,增加可靠性。经过校正某同轴三反消像散系统,计算结果表明,系统的波像差均方根值(RMS)减小到0.025 λ,与设计值相差小于0.014 λ,满足空中装调需求。

     

    Abstract: The reflective high-resolution optical system is the future development direction of airborne telescope system. When the optical system works on the aviation platform, there will exist offset errors in the optical system, which needs to be corrected in the air due to the influence of temperature change, vibration and impact. The nonlinear function mathematical model between mirror misalignment and Zernike coefficients was established, and the Bhattacharyya coefficient method was used to eliminate the highly correlated misalignment, reduce the complexity of the air alignment and increase the reliability. After correcting a coaxial three-mirror anastigmatic system, the results show that the root-mean-square (RMS) value of wavefront aberration reduces to 0.025 λ, which is 0.014 λ different from the design value, and satisfies the demands of air alignment.

     

/

返回文章
返回