基于EBAPS的全国产成像电路研制

杨婧薇, 钱芸生, 柳磊, 卢杰

杨婧薇, 钱芸生, 柳磊, 卢杰. 基于EBAPS的全国产成像电路研制[J]. 应用光学, 2023, 44(3): 668-676. DOI: 10.5768/JAO202344.0305002
引用本文: 杨婧薇, 钱芸生, 柳磊, 卢杰. 基于EBAPS的全国产成像电路研制[J]. 应用光学, 2023, 44(3): 668-676. DOI: 10.5768/JAO202344.0305002
YANG Jingwei, QIAN Yunsheng, LIU Lei, LU Jie. Development of domestic imaging circuit based on EBAPS[J]. Journal of Applied Optics, 2023, 44(3): 668-676. DOI: 10.5768/JAO202344.0305002
Citation: YANG Jingwei, QIAN Yunsheng, LIU Lei, LU Jie. Development of domestic imaging circuit based on EBAPS[J]. Journal of Applied Optics, 2023, 44(3): 668-676. DOI: 10.5768/JAO202344.0305002

基于EBAPS的全国产成像电路研制

基金项目: 国家自然科学基金“叶企孙”科学基金项目(U2141239)
详细信息
    作者简介:

    杨婧薇(1998—),女,硕士研究生,主要从事光电信息探测、FPGA开发和图像信号处理研究。E-mail:yjwei0310@163.com

    通讯作者:

    钱芸生(1968—),男,博士研究生,教授,博士生导师,主要从事光电成像器件、系统与相关检测技术研究。E-mail:yshqian2015@163.com

  • 中图分类号: TN223

Development of domestic imaging circuit based on EBAPS

  • 摘要:

    电子轰击型有源像素传感器(electron bombarded active pixel sensor,EBAPS)具有高增益、快响应、低功耗和低成本等优点,研究EBAPS已成为微光夜视成像技术的一个重要发展方向。国内相关机构在电路设计时,对于EBAPS成像电路中所涉及到的芯片主要还是依赖于进口,为加快EBAPS器件成像电路的国产化进程,研制了一套基于EBAPS的全国产成像电路评估板。该电路以国产复旦微FMK50t系列的FPGA芯片为主控芯片,通过设计CMOS( complementary metal oxide semiconductor) 驱动模块、数据处理模块、Cameralink显示模块等,分别完成对EBAPS器件的驱动、数字图像处理和实时显示等功能。实验结果表明:在轰击高压为负1 500 V的情况下,该国产EBAPS相机的最低探测照度可达到10−3 lx量级。

    Abstract:

    Electron bombarded active pixel sensor (EBAPS) has the advantages of high gain, fast response, low power consumption and low cost. Research on EBAPS has become an important development direction of low-light-level night vision imaging technology. In the circuit design of relevant domestic institutions, the chips involved in the EBAPS imaging circuit mainly rely on imports. In order to accelerate the localization process of imaging circuits of EBAPS devices, a set of domestic-produced imaging circuit evaluation board based on EBAPS was developed. The circuit used the FPGA chip of domestic Fudan Micro FMK50t series as the main control chip, and completed the functions of driving the EBAPS device, digital image processing and real-time display by designing a complementary metal oxide semiconductor (CMOS) driver module, a data processing module, and a Cameralink display module. The experimental results show that when the bombardment negative high voltage is 1 500 V, the minimum detection illuminance of the domestic EBAPS camera can reach the order of 10−3 lx.

  • 图  1   EBAPS基本结构示意图

    Figure  1.   Schematic diagram of basic structure of EBAPS

    图  2   成像系统结构框图

    Figure  2.   Structure block diagram of imaging system

    图  3   系统电源模块供电方案

    Figure  3.   Power supply scheme of system power module

    图  4   关键硬件电路实物图

    Figure  4.   Physical drawing of key hardware circuits

    图  5   逻辑设计框图

    Figure  5.   Block diagram of logic design

    图  6   不足曝光时算法效果图

    Figure  6.   Algorithm effect diagram when underexposed

    图  7   过度曝光时算法效果图

    Figure  7.   Algorithm effect diagram when overexposed

    图  8   去噪算法逻辑设计框架

    Figure  8.   Logic design framework of denoising algorithm

    图  9   算法前后EBAPS成像对比结果

    Figure  9.   Comparison results of EBAPS imaging before and after algorithm

    图  10   测试系统结构组成实物图

    Figure  10.   Physical drawing of structure composition for test system

    图  11   可变高压下的EBAPS成像图

    Figure  11.   EBAPS imaging images under variable high voltages

    表  1   APS芯片主要技术参数

    Table  1   Main technical parameters of APS chip

    技术参数指标
    供电电压/V3.5
    分辨率/pixel1 280(H)×1 024(V)
    像素尺寸/ μm12.5
    像素时钟频率/MHz≤80
    光谱范围/μm0.3~0.97
    存储温度/℃−40~+80
    输出数据格式差分模拟(2 V & 1.2 V~2 V)
    下载: 导出CSV
  • [1] 金伟其, 陶禹, 石峰, 等. 微光视频器件及其技术的进展[J]. 红外与激光工程,2015,44(11):3167-3176. doi: 10.3969/j.issn.1007-2276.2015.11.001

    JIN Weiqi, TAO Yu, SHI Feng, et al. Progress of low-light video devices and their technology[J]. Infrared and Laser Engineering,2015,44(11):3167-3176. doi: 10.3969/j.issn.1007-2276.2015.11.001

    [2] 严毅赟, 钱芸生, 张景智, 等. 电子轰击有源像素传感器光谱响应测试系统设计[J]. 激光与光电子学进展,2022,59(23):123-128.

    YAN Yiyun, QIAN Yunsheng, ZHANG Jingzhi, et al. Design of EBAPS spectral response measurement system[J]. Advances in Laser and Optoelectronics,2022,59(23):123-128.

    [3] 徐鹏霄, 唐光华, 唐家业, 等. EBCMOS 混合型光电探测器研究[J]. 光电子技术,2016,36(4):232-236.

    XU Pengxiao, TANG Guanghua, TANG Jiaye, et al. Research on EBCMOS hybrid photodetector[J]. Photoelectronic Technique,2016,36(4):232-236.

    [4]

    AEBI V W, COSTELLO K A, ARCUNI P W, et al. EBAPS: Next generation, low power, digital night vision[C]. [S. l. ]: OPTRO 2005 International Symposium, 2005: 1-10.

    [5] 籍宇豪. 基于可变高压下的宽动态范围EBAPS成像技术研究[D]. 南京: 南京理工大学, 2021.

    JI Yuhao. Research on wide dynamic range EBAPS imaging technology under variable high pressure[D]. Nanjing: Nanjing University of Science and Technology, 2021.

    [6]

    DOMINJON A, CHABANAT E, DEPASSE P, et al. LUSIPHER large-scale ultra-fast single photo-electron tracker[C]// IEEE Nuclear Science Symposium conference record. New York, USA: IEEE, 2009: 1527-1531.

    [7]

    CHRZANOWSKI K. Review of night vision technology[J]. Opto-Electronics Review,2013,21(2):153-181.

    [8] 刘虎林, 王兴, 田进寿, 等. 高分辨紫外电子轰击互补金属氧化物半导体器件的实验研究[J]. 物理学报,2018,67(1):175-180.

    LIU Hulin, WANG Xing, TIAN Jinshou, et al. Experimental study on high-resolution ultraviolet electron bombardment of complementary metal oxide semiconductor devices[J]. Acta Physica Sinica,2018,67(1):175-180.

    [9] 刘亚宁, 桑鹏, 吕嘉玮, 等. 微型低功耗EBAPS相机技术[J]. 红外技术,2019,41(9):810-818.

    LIU Yaning, SANG Peng, LYU Jiawei, et al. Miniature low-power EBAPS camera technology[J]. Infrared Technology,2019,41(9):810-818.

    [10] 许恒煜. 基于FPGA的高清视频显示控制系统的研究与设计[D]. 南京: 东南大学, 2021.

    XU Hengyu. Research and design of high-definition video display control system based on FPGA[D]. Nanjing: Southeast University, 2021.

    [11] 尹传海. 基于图像处理的自动曝光和自动对焦算法研究[D]. 苏州: 苏州大学, 2017.

    YINChuanhai. Research on automatic exposure and autofocus algorithm based on image processing[D]. Suzhou: Soochow University, 2017.

    [12] 于帅. 基于CMOS图像传感器的高速相机成像电路设计与研究[D]. 上海: 中国科学院研究生院(上海技术物理研究所), 2014.

    YU Shuai. Design and research of high-speed camera imaging circuit based on CMOS image sensor [D]. Shanghai : Graduate School of Chinese Academy of Sciences (Shanghai Institute of Technical Physics), 2014.

    [13] 胡晓明. 基于NSC1105传感器的数字接口CMOS成像系统研制[D]. 南京: 南京理工大学, 2016.

    HU Xiaoming. Development of digital interface CMOS imaging system based on NSC1105 sensor [D]. Nanjing: Nanjing University of Science and Technology, 2016.

    [14] 郑扬帆, 尹达一, 李清灵, 等. 基于低噪声CMOS图像传感器的成像电路设计与实现[J]. 电子设计工程,2018,26(4):188-193. doi: 10.3969/j.issn.1674-6236.2018.04.041

    ZHENG Yangfan, YIN Dayi, LI Qingling, et al. Design and implementation of imaging circuit based on low noise CMOS image sensor[J]. Electronic Design Engineering,2018,26(4):188-193. doi: 10.3969/j.issn.1674-6236.2018.04.041

    [15] 夏冠玉, 肖中俊, 严志国. 基于CMOS图像传感的低噪声研究分析[J]. 齐鲁工业大学学报,2020,34(6):13-17. doi: 10.16442/j.cnki.qlgydxxb.2020.06.003

    XIA Guanyu, XIAO Zhongjun, YAN Zhiguo. Research and analysis of low noise based on CMOS image sensing[J]. Journal of Qilu University of Technology,2020,34(6):13-17. doi: 10.16442/j.cnki.qlgydxxb.2020.06.003

    [16] 李强, 金龙旭, 李国宁. 基于暗电流CMOS图像传感器固定模式噪声校正研究[J]. 液晶与显示,2021,36(2):327-333. doi: 10.37188/CJLCD.2020-0176

    LI Qiang, JIN Longxu, LI Guoning. Research on fixed pattern noise correction based on dark current CMOS image sensor[J]. Liquid Crystal and Display,2021,36(2):327-333. doi: 10.37188/CJLCD.2020-0176

    [17] 李轩. CMOS图像传感器噪声抑制研究[D]. 天津: 天津大学, 2010.

    LI Xuan. Research on noise suppression of CMOS image sensor [D]. Tianjin: Tianjin University, 2010.

    [18]

    CHEN Nan, ZHONG Shengyou, ZOU Mei, et al. A low-noise CMOS image sensor with digital correlated multiple sampling[J]. IEEE Transactions on Circuits and Systems I: Regular Papers,2018,65(1):84-94.

  • 期刊类型引用(9)

    1. 刘伟,吴昺炎,车易泽. 单光纤分布式传感阵列接收响应特性分析. 光纤与电缆及其应用技术. 2023(03): 1-3+28 . 百度学术
    2. 董小卫,田志华,李一强,汪志,韩光耀,唐家财,刘帅. 水平井桥塞分段压裂管外光纤监测技术. 石油钻采工艺. 2023(05): 649-654 . 百度学术
    3. 董小卫,刘帅,汪志,王宁博,刘飞,麻慧博,赵田. 井下光纤微地震监测系统设计及应用. 应用光学. 2022(01): 171-178 . 本站查看
    4. 于淼,孙铭阳,何禹潼,张崇富,郑志丰,孔谦. 相位敏感光时域反射系统低频响应性能优化. 红外与激光工程. 2022(05): 253-261 . 百度学术
    5. 宁卫东,陈金宏,朱涵斌,李剑,孟骞,刘荣芳. 分布式光纤储气库井找漏技术应用. 测井技术. 2022(05): 638-642 . 百度学术
    6. 简丹,刘诚. 可用于现场快速检测的小型化多通道光谱测量系统. 应用光学. 2021(02): 310-316 . 本站查看
    7. 余双勇,衣文索,陈昊玥,韩冬子,王鑫睿. 分布式声传感型特种光纤结构设计. 仪器仪表学报. 2021(03): 59-69 . 百度学术
    8. 黄战华,张晗笑,曹雨生,陈智林,申苜弘. 阵列细丝直径实时快速检测系统设计. 应用光学. 2021(06): 1011-1016 . 本站查看
    9. 高新雨,衣文索,陈刚,巩楠楠,林家锴. 用于地震信号检测的分布式光纤声学传感系统设计. 光通信技术. 2021(12): 14-16 . 百度学术

    其他类型引用(5)

图(11)  /  表(1)
计量
  • 文章访问数:  361
  • HTML全文浏览量:  217
  • PDF下载量:  75
  • 被引次数: 14
出版历程
  • 收稿日期:  2022-08-29
  • 修回日期:  2023-01-05
  • 网络出版日期:  2023-04-12
  • 刊出日期:  2023-05-14

目录

    /

    返回文章
    返回