Measurement of normal spectral emissivity of materials at high temperature
-
摘要:
为满足隐身材料、热防材料和隔热涂层等高温材料涂层的光谱发射率的高精度测量需求,研究了在1 273 K~3 100 K条件下准确测量材料法向光谱发射率的方法。基于发射率定义,建立了材料法向光谱发射率测量模型,并在该基础上研建了光谱范围为0.7 μm~12 μm的材料法向光谱发射率测量装置。为克服测量装置中样品高精度加热时伴随腔体效应的技术难点,研制了具备可移动石墨坩埚的样品加热炉,取得了良好的实验效果。使用发射率测量装置对SiC与低发射率涂层2种样品的法向光谱发射率进行实验测量。结果表明:2种样品的法向光谱发射率均随波长增加而降低,随温度的升高而升高。最后对高温状态下材料法向光谱发射率测量不确定度进行了评定,相对扩展不确定度为3.6%。
Abstract:In order to meet the high-precision measurement requirements of spectral emissivity of high-temperature material coating, including stealthy materials, thermal protection materials, heat insulating coat and so on, the measuring methods for normal spectral emissivity of materials at 1 273 K~3 100 K was explored. A measurement model of normal spectral emissivity of materials was established based on the emissivity definition. On this basis, the measurement facility of normal spectral emissivity of materials was built, and the wavelength range was 0.7 μm to 12 μm. In order to overcome the technical difficulties associated with cavity effect when the sample was heated with high precision in the measuring device, a sample heating furnace with a movable graphite crucible was developed, and the good experimental results were obtained. The normal spectral emissivity of two samples (SiC and low emissivity coating) was measured by this facility. The results show that the normal spectral emissivity of two samples reduces with the increase of wavelengths and rises with the increase of temperature. Finally, the measurement uncertainty of normal spectral emissivity of materials at high temperature was analyzed, and the relative expanded uncertainty is 3.6%.
-
Keywords:
- spectral emissivity /
- coating /
- cavity effect /
- measurement uncertainty
-
-
表 1 法向光谱发射率测量不确定度分析
Table 1 Measurement uncertainty analysis of normal spectral emissivity
不确定度分量 标准不确定度/% 高温黑体发射率 0.05 高温黑体温度测量 0.6 样品材料温度测量 0.6 红外探测系统测量 1.1 光谱分光系统波长测量 0.5 测量重复性 1.0 相对合成标准不确定度 1.8 相对扩展不确定度(k=2) 3.6 -
[1] HANSSEN L M, KAPIAN S G, MEKHONTSEV S N, et al. Fourier transform system for characterization of infrared speetral emittance[J]. Temperature and Thermal Measurements in Industry and Science. BerLin,2001,6:212-221.
[2] HANSSEN L, MEKHONTSER S. Infrared spectral emissivity characterization facility at NIST[J]. Radiation Thermometry and Calibration,2004,10:1117-1124.
[3] SAUNDERS P, WHITE D R. “Disappearing Object” radiation hiermometer for low-emissivity process control[J]. Int. J. Thermophys,2010,31:1583-1598. doi: 10.1007/s10765-010-0801-1
[4] 李享, 李劲东, 王玉莹, 等. 中段飞行弹道导弹表面温度与辐射特性计算[J]. 红外技术,2022,44(2):134-139. LI Heng, LI Jindong, WANG Yuying, et al. Calculation of temperature and radiation characteristics of midcourse ballistic missiles[J]. Infrared Technology,2022,44(2):134-139.
[5] 梁伟, 金华, 孟松鹤, 等. 高超声速飞行器新型热防护机制研究进展[J]. 宇航学报,2021,42(4):409-424. doi: 10.3873/j.issn.1000-1328.2021.04.002 LIANG Wei, JIN Hua, MENG Songhe, et al. Research progress on new thermal protection mechanism of hypersonic vehicles[J]. Journal of Astronautics,2021,42(4):409-424. doi: 10.3873/j.issn.1000-1328.2021.04.002
[6] 刘鹏, 殷举航, 罗雄光, 等. 高温红外隐身涂层材料研究进展[J]. 材料研究与应用,2022,16(1):57-67. doi: 10.3969/j.issn.1673-9981.2022.01.008 LIU Peng, YIN Juhang, LUO Xiongguang, et al. Research progress of high temperature infrared stealth coating materials[J]. Materials Research and Application,2022,16(1):57-67. doi: 10.3969/j.issn.1673-9981.2022.01.008
[7] 杨明, 李玉花, 李明. 热障涂层制备方法的研究现状[J]. 湖北理工学院学报,2021,37(3):33-38. doi: 10.3969/j.issn.2095-4565.2021.03.008 YANG Ming, LI Yuhua, LI Ming. Research review of thermal barrier coatings preparation methods[J]. Journal of Hubei Polytechnic University,2021,37(3):33-38. doi: 10.3969/j.issn.2095-4565.2021.03.008
[8] 李猛, 郭娟, 季新杰, 等. 红外隐身涂层光谱发射率测量定标研究[J]. 激光与红外,2022,52(3):382-387. doi: 10.3969/j.issn.1001-5078.2022.03.012 LI Meng, GUO Juan, JI Xinjie, et al. Research on calibration of infrared stealth coating spectral emissivity measurement[J]. Laser & Infraed,2022,52(3):382-387. doi: 10.3969/j.issn.1001-5078.2022.03.012
[9] 刘波, 郑伟, 李海洋. 材料表面发射率测量技术研究进展[J]. 红外技术,2018,40(8):725-732. LIU Bo, ZHENG Wei, LI Haiyang. Research and progress on material surface emissivity measurement[J]. Infrared Technology,2018,40(8):725-732.
[10] 吴江辉, 高教波, 李建军. 固体材料定向光谱发射率测量装置研究及误差分析[J]. 应用光学,2010,31(4):597-601. doi: 10.3969/j.issn.1002-2082.2010.04.019 WU Jianghui, GAO Jiaobo, LI Jianjun. Directional spectral emissivity measurement of solid materials and its error analysis[J]. Journal of Applied Optics,2010,31(4):597-601. doi: 10.3969/j.issn.1002-2082.2010.04.019
[11] 王学新, 岳文龙, 杨鸿儒, 等. IRS400型材料发射率测试装置的研制[J]. 应用光学,2015,36(2):272-276. doi: 10.5768/JAO201536.0203006 WANG Xuexin, YUE Wenlong, YANG Hongru, et al. Development of measurement equipment for IRS400 type material emissivity[J]. Journal of Applied Optics,2015,36(2):272-276. doi: 10.5768/JAO201536.0203006
[12] 于坤, 石瑞涛, 张会燕, 等. 纯钨红外光谱发射率特性研究[J]. 光谱学与光谱分析,2020,40(1):107-112. YU Kun, SHI Ruitao, ZHANG Huiyan, et al. Experimental investigation of infrared spectral emissivity of pure tungsten[J]. Spectroscopy and Spectral Analysis,2020,40(1):107-112.
[13] 袁林光, 薛战理, 李宏光, 等. 低温状态下的材料法向发射率测量[J]. 光学精密工程,2016,24(1):59-64. doi: 10.3788/OPE.20162401.0059 YUAN Linguang, XUE Zhanli, LI Hongguang, et al. Measurement of normal emissivity of materials at low temperature[J]. Optics and Precision Engineering,2016,24(1):59-64. doi: 10.3788/OPE.20162401.0059
[14] 袁良, 占春连, 李燕, 等. 红外目标光谱辐射亮度测试技术[J]. 红外与激光工程,2015,44(12):3807-3811. doi: 10.3969/j.issn.1007-2276.2015.12.052 YUAN Liang, ZHAN Chunlian, LI Yan, et al. Testing technology of spectral radiance of infrared target[J]. Infrared and Laser Engineering,2015,44(12):3807-3811. doi: 10.3969/j.issn.1007-2276.2015.12.052
[15] 中国人民解放军总装备部电子信息基础部. 材料涂层反射率和发射率测试方法第2部分: 发射率: GJB5023.2–2003 [S]. 北京: 总装备部军标出版发行部, 2003. Department of Electronic Information, General Equipment Department, PLA. Materials coatings - test methods for reflectivity and emissivity - part 2: emissivity GJB5023.2–2003 [S]. Beijing: General Armament Department Military logo Publishing and Distribution Department, 2003.
[16] 国防科技工业一级计量站. 红外材料光谱发射率测量系统校准规范: JJF (军工) 150–2017 [S]. 北京: 国家国防科技工业局, 2018. National Defense Science,Technology and Industry Level I Metering Station .Calibration specification for infrared material spectral emissivity measurement system: JJF150-2017 [S]. Beijing: State Administration of Science, Technology and Industry for National Defence, 2018.
-
期刊类型引用(1)
1. 赵丽莉. 基于数据挖掘的多波段激光数据分类算法研究. 光通信研究. 2020(06): 12-16 . 百度学术
其他类型引用(1)