全天候全景监控摄像用光学系统设计

王晓檬, 陈宇, 王春艳, 赵义武, 孙昊, 刘欢, 张桐

王晓檬, 陈宇, 王春艳, 赵义武, 孙昊, 刘欢, 张桐. 全天候全景监控摄像用光学系统设计[J]. 应用光学, 2023, 44(3): 484-490. DOI: 10.5768/JAO202344.0301003
引用本文: 王晓檬, 陈宇, 王春艳, 赵义武, 孙昊, 刘欢, 张桐. 全天候全景监控摄像用光学系统设计[J]. 应用光学, 2023, 44(3): 484-490. DOI: 10.5768/JAO202344.0301003
WANG Xiaomeng, CHEN Yu, WANG Chunyan, ZHAO Yiwu, SUN Hao, LIU Huan, ZHANG Tong. Design of optical system for all-weather and panoramic surveillance camera[J]. Journal of Applied Optics, 2023, 44(3): 484-490. DOI: 10.5768/JAO202344.0301003
Citation: WANG Xiaomeng, CHEN Yu, WANG Chunyan, ZHAO Yiwu, SUN Hao, LIU Huan, ZHANG Tong. Design of optical system for all-weather and panoramic surveillance camera[J]. Journal of Applied Optics, 2023, 44(3): 484-490. DOI: 10.5768/JAO202344.0301003

全天候全景监控摄像用光学系统设计

基金项目: 吉林省自然科学基金(20200201185JC);吉林省科技发展计划项目(20200401048GX);长春理工大学青年科学基金(XQNJJ-2018-08)
详细信息
    作者简介:

    王晓檬(1998—),女,硕士研究生,主要从事光学设计研究。E-mail:936893337@qq.com

    通讯作者:

    陈宇(1978—),男,博士,副教授,硕士生导师,主要从事光学设计研究。E-mail:323111501@qq.com

  • 中图分类号: TN202

Design of optical system for all-weather and panoramic surveillance camera

  • 摘要:

    设计了一款能实现全天候清晰成像的全景监控摄像光学系统。采用全景环带结构形式,该结构分为摄像头部单元和中继透镜单元两部分,摄像头部单元完成全视场目标搜索,中继透镜单元将头部单元所成的中间虚像进行二次成像会聚到探测器上。设计时采用多重结构优化方式,实现可见光及近红外双波段成像。该光学系统视场为360°×(40°~100°),焦距为−2.75 mm,F数为3.28。设计结果表明:系统的MTF(modulation transfer function)值在全视场处接近衍射极限,各个视场的弥散斑半径均小于所选CCD像元尺寸,畸变小于2 %,且日夜离焦量小于0.002 mm,该设计结果可满足全天候全景监控需求。

    Abstract:

    An optical system for panoramic surveillance cameras that can achieve clear all-weather imaging was designed. A panoramic annular structure was adopted, which was divided into two parts: camera head unit and relay lens unit. The camera head unit completed the full field of view target search, and the relay lens unit performed secondary imaging of the intermediate virtual image formed by the head unit and converged it on the detector. The design adopted multiple structural optimization methods to achieve visible light and near-infrared dual band imaging. The field of view of the optical system is 360°× (40°~100°), the focal length is −2.75 mm, and the F number is 3.28. The design results show that the modulation transfer function (MTF) value is close to the diffraction limit at the full field of view, the diffuse spot radius of each field of view is less than the selected CCD pixel size, the distortion is less than 2%, and the day-night defocus amount is less than 0.002 mm, which can meet the requirements of all-weather and panoramic surveillance.

  • 图  1   平面圆柱投影原理示意图

    Figure  1.   Schematic of principle of flat cylinder perspective

    图  2   全景环带透镜成像光路图

    Figure  2.   Imaging optical path of panoramic annular lens

    图  3   头部单元光学结构

    Figure  3.   Optical structure diagram of head unit

    图  4   头部单元MTF曲线图

    Figure  4.   MTF curves of head unit

    图  5   光学系统结构图

    Figure  5.   Structure diagram of optical system

    图  6   系统MTF曲线图

    Figure  6.   MTF curves of system

    图  7   系统点列图

    Figure  7.   Spot diagram of system

    图  8   系统的场曲和畸变曲线

    Figure  8.   Field curvature and distortion curves of system

    表  1   光学系统技术指标

    Table  1   Technical indices of optical system

    参数技术指标
    工作波段/nm可见光、近红外(840~860)
    视场角/(°)360×(40~100)
    像元尺寸/μm≤4
    焦距/mm−2.75
    F3.28
    MTF(125 lp/mm)>0.4
    相对照度>0.9
    畸变/%<2
    下载: 导出CSV

    表  2   镜头结构参数

    Table  2   Parameters of lens configuration

    表面曲率半径/mm厚度/mm材料
    138.19523.780H-K9L
    2*−15.661−22.829MIRROR
    3−37.55522.829MIRROR
    STO*−15.6611.998AIR
    5−5.1371.507SF14
    6−5.7270.647AIR
    7−20.2631.594N-BAK2
    8−5.9941.582LAF9
    9−12.6160.599AIR
    1013.0331.838ZF51
    1110.6011.604H-ZK50
    12100.4389.902AIR
    1313.9541.199ZF51
    147.2472.639BASF12
    15−26.6871.101AIR
    16−11.6401.070N-KZFS8
    17−113.7019AIR
    下载: 导出CSV

    表  3   非球面面型参数

    Table  3   Aspheric surface parameters

    表面曲率半径/mm圆锥系数四阶项六阶项八阶项
    2、4−15.6610.159 8955.706 90×10−64.400 18×10−81.038 33×10−10
    下载: 导出CSV

    表  4   公差分析项目和取值范围

    Table  4   Tolerance analysis items and value ranges

    公差项目取值范围
    曲率半径<2
    中心厚度/mm±0.04
    表面偏心/mm±0.013
    表面倾斜/(°)±0.017
    材料折射率±0.001
    阿贝数/%±0.3
    下载: 导出CSV

    表  5   蒙特卡罗分析结果

    Table  5   Monte Carlo analysis results

    成像区域/%MTF(@125 lp/mm)
    90>0.323 0
    80>0.330 1
    50>0.379 1
    20>0.441 7
    10>0.484 8
    下载: 导出CSV
  • [1]

    KOPILIVIC I, VAGVOLGYI B, SZIRANYI T. Application of panoramic annular lens for motion analysis tasks: surveillance and smoke detection[J]. IEEE:Pattern Recognition,2000,4(1):714-717.

    [2] 吕丽军, 吴学伟. 鱼眼镜头初始结构的设计[J]. 光学学报,2017,37(2):105-114.

    LYU Lijun, WU Xuewei. Design of initial structure of fisheye lens[J]. Acta Optica Sinica,2017,37(2):105-114.

    [3] 张继艳, 黄元庆, 熊飞兵, 等. 宽光谱日夜两用鱼眼监控镜头的设计[J]. 激光与红外,2013,43(12):1389-1392. doi: 10.3969/j.issn.1001-5078.2013.12.16

    ZHANG Jiyan, HUANG Yuanqing, XIONG Feibing et al. Design of a wide spectrum day and night fisheye CCTV lens[J]. Laser and Infrared,2013,43(12):1389-1392. doi: 10.3969/j.issn.1001-5078.2013.12.16

    [4] 曹一青. 超大视场折反射全景光学成像系统设计[J]. 应用光学,2021,42(4):608-613. doi: 10.5768/JAO202142.0401006

    CAO Yiqing. Design of catadioptric panoramic optical imaging system with large field of view[J]. Journal of Applied Optics,2021,42(4):608-613. doi: 10.5768/JAO202142.0401006

    [5] 张少军, 徐熙平. 360°高阶非球面反射式全景镜头设计[J]. 光学精密工程,2018,26(8):1977-1984. doi: 10.3788/OPE.20182608.1977

    ZHANG Shaojun, XU Xiping. Design of 360° high-order aspheric reflective panoramiclens[J]. Optics and Precision Engineering,2018,26(8):1977-1984. doi: 10.3788/OPE.20182608.1977

    [6]

    SOLOMATIN V A. A panoramic video camera[J]. Journal of Optical Technology,2007,74(12):815-817. doi: 10.1364/JOT.74.000815

    [7]

    GREGUSS P. Panoramic imaging block for three-dimensional space: US4566763[P]. 1986-02-10.

    [8] GREGUSS P. Panoramic security[J]. SPIE: The International Society for Optical Engineering, 1991, 1509: 55-66.
    [9] 江伦, 黄玮, 许伟才. 周视监控全景镜头设计[J]. 应用光学,2012,33(1):1-4.

    JIANG Lun, HUANG Wei, XU Weicai. Panoramic lens for full view monitoring[J]. Journal of Applied Optics,2012,33(1):1-4.

    [10] 周向东, 白剑. Q-Type非球面小畸变全景环带光学系统设计[J]. 光学学报,2015,35(7):299-305.

    ZHOU Xiangdong, BAI Jian. Design of Q-Type aspherical small distortion panoramic annular optical system[J]. Acta Optica Sinica,2015,35(7):299-305.

    [11] 姚远, 白剑. 水平对称视场全景环带成像系统设计[J]. 光学与光电技术,2016,14(2):74-77.

    YAO Yuan, BAI Jian. Design of panoramic ring-zone imaging system for horizontal symmetrical field of view[J]. Optics & Optoelectronic Technology,2016,14(2):74-77.

    [12] 黄文华, 林峰. 大孔径大靶面昼夜型监控镜头光学系统设计[J]. 应用光学,2016,37(1):45-51. doi: 10.5768/JAO201637.0101008

    HANG Wenhuang, LIN Feng. Desing of day and night lens with large aperture and sensor[J]. Journal of Applied Optics,2016,37(1):45-51. doi: 10.5768/JAO201637.0101008

    [13] 白剑, 牛爽, 杨国光, 等. 全景光学环带凝视成像技术[J]. 红外与激光工程,2006,35(3):331-335. doi: 10.3969/j.issn.1007-2276.2006.03.019

    BAI Jian, NIU Shuang, YANG Guoguang, et al. Panoramic optical annular staring imaging technology[J]. Infrared and Laser Engineering,2006,35(3):331-335. doi: 10.3969/j.issn.1007-2276.2006.03.019

    [14]

    ZHANG K, ZHONG X, ZHANG L, et al. Design of a panoramic annular lens with ultrawide angle and small blind area[J]. Applied Optics,2020,59(19):5737-5744. doi: 10.1364/AO.395598

    [15] 鲁天雄, 白剑, 黄治, 等,. 全景环带成像系统的杂散光分析及抑制[J]. 光学学报,2013,33(5):104-112.

    LU Tianxiong, BAI Jian, HUANG Zhi, et al. Stray light analysis and suppression of panoramic annular lens[J]. Acta Optica Sinica,2013,33(5):104-112.

  • 期刊类型引用(6)

    1. 窦恩泽,杨鹏程,李小成,任拓. 改进PConvUNet图像修补的解包裹方法. 现代电子技术. 2024(05): 46-52 . 百度学术
    2. 康乐谦,杨鹏程,吕秋娟,连力平,朱新栋. Tsallis相对熵引导的包裹相位修补. 光学精密工程. 2024(08): 1130-1139 . 百度学术
    3. 任拓,杨鹏程,李小成,窦恩泽,朱新栋. 激光干涉测量中数据驱动的齿轮装夹误差校正方法. 光子学报. 2024(12): 224-235 . 百度学术
    4. 苏皓,刘冬冬,董太极,高彪. 基于法布里-珀罗干涉的双电机转速测量. 激光与红外. 2021(12): 1649-1653 . 百度学术
    5. 李玥. 基于大数据分析技术的激光图像分类和识别研究. 激光杂志. 2020(08): 129-133 . 百度学术
    6. 程志远,李治国,折文集,夏爱利. 激光相干场成像散斑噪声复合去噪方法. 物理学报. 2019(05): 154-160 . 百度学术

    其他类型引用(4)

图(8)  /  表(5)
计量
  • 文章访问数:  509
  • HTML全文浏览量:  221
  • PDF下载量:  137
  • 被引次数: 10
出版历程
  • 收稿日期:  2022-05-04
  • 修回日期:  2022-05-29
  • 网络出版日期:  2023-03-03
  • 刊出日期:  2023-05-14

目录

    /

    返回文章
    返回