留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于衍射元件的宽光谱紫外中继光学系统研究

司昌田 杨磊 郭程祥 史天翼 谢洪波

司昌田, 杨磊, 郭程祥, 史天翼, 谢洪波. 基于衍射元件的宽光谱紫外中继光学系统研究[J]. 应用光学, 2023, 44(3): 476-483. doi: 10.5768/JAO202344.0301002
引用本文: 司昌田, 杨磊, 郭程祥, 史天翼, 谢洪波. 基于衍射元件的宽光谱紫外中继光学系统研究[J]. 应用光学, 2023, 44(3): 476-483. doi: 10.5768/JAO202344.0301002
SI Changtian, YANG Lei, GUO Chengxiang, SHI Tianyi, XIE Hongbo. Ultraviolet relay optical system with wide spectrum based on diffractive elements[J]. Journal of Applied Optics, 2023, 44(3): 476-483. doi: 10.5768/JAO202344.0301002
Citation: SI Changtian, YANG Lei, GUO Chengxiang, SHI Tianyi, XIE Hongbo. Ultraviolet relay optical system with wide spectrum based on diffractive elements[J]. Journal of Applied Optics, 2023, 44(3): 476-483. doi: 10.5768/JAO202344.0301002

基于衍射元件的宽光谱紫外中继光学系统研究

doi: 10.5768/JAO202344.0301002
基金项目: 国防预研基金
详细信息
    作者简介:

    司昌田(1998—),男,硕士研究生,主要从事光学设计研究。E-mail:sct@tju.edu.cn

    通讯作者:

    杨磊(1982—),男,博士研究生,副教授,主要从事光学设计、光电检测与成像研究。E-mail:yanglei@tju.edu.cn

  • 中图分类号: TN23

Ultraviolet relay optical system with wide spectrum based on diffractive elements

  • 摘要: 紫外像增强器在电晕检测、战略国防、科学研究等领域具有广泛的应用,但由于与其配合使用的紫外光学镜头可用材料匮乏,存在色差校正困难等问题,难以满足宽光谱应用需求。论文分析了单层衍射元件和双层衍射元件在宽波段紫外光学系统中的适用性,并各设计了一套宽光谱、高分辨率的紫外光学系统。单层衍射紫外光学系统的工作波长范围为230 nm~280 nm,在截止频率60 lp·mm−1处调制传递函数(MTF)值优于0.47;双层衍射紫外光学系统的工作波长范围为200 nm~400 nm,在截止频率60 lp·mm−1处MTF值优于0.49。设计结果表明:衍射元件能够有效校正紫外光谱色差,与现有宽光谱紫外系统相比,该文设计的光学系统为中继成像系统,并且具有更宽的紫外光谱范围与更高的成像分辨率。
  • 图  1  五种衍射级次的衍射效率对比曲线

    Fig.  1  Comparison curves of diffractive efficiency of five diffraction orders

    图  2  单层衍射元件的衍射效率曲线

    Fig.  2  Diffractive efficiency curve of SLDOE

    图  3  单层衍射紫外光学系统结构图

    Fig.  3  Structure diagram of UV optical system with SLDOE

    图  4  单层衍射紫外光学系统MTF曲线图

    Fig.  4  MTF curves of UV optical system with SLDOE

    图  5  单层衍射紫外光学系统点列图

    Fig.  5  Spot diagram of UV optical system with SLDOE

    图  6  单层衍射元件相位和线频参数曲线图

    Fig.  6  Parametric curves of phase and line frequency of SLDOE

    图  7  最佳组合算法流程图

    Fig.  7  Flow chart of optimal combination algorithm

    图  8  两种组合双层衍射元件的衍射效率曲线

    Fig.  8  Diffractive efficiency curves of two combinations double-layer DOE

    图  9  双层衍射紫外光学系统结构图

    Fig.  9  Structure diagram of UV optical system with double-layer DOE

    图  10  双层衍射紫外光学系统MTF曲线图

    Fig.  10  MTF curves of UV optical system with double-layer DOE

    图  11  双层衍射紫外光学系统点列图

    Fig.  11  Spot diagram of UV optical system with double-layer DOE

    图  12  双层衍射元件的相位和线频参数曲线图

    Fig.  12  Parametric curves of phase and line frequency of double-layer DOE

    表  1  单层衍射紫外光学系统设计参数

    Table  1  Design parameters of UV optical system with SLDOE

    参数数值
    工作波段/nm230~280
    DOE设计波长/nm250
    成像比例2:1
    视场(像高)/mm20
    F3
    MTF@60 lp·mm−1>0.4
    后工作距/mm>45
    石英保护玻璃厚度/mm5.5
    系统总长/mm<200
    下载: 导出CSV

    表  2  双层衍射紫外光学系统设计参数

    Table  2  Design parameters of UV optical system with double-layer DOE

    参数数值
    工作波段/nm200~400
    DOE设计波长/nm215
    成像比例2:1
    视场(像高)/mm20
    F3.5
    MTF@60 lp·mm−1>0.4
    后工作距/mm>45
    石英保护玻璃厚度/mm5.5
    系统总长/mm<260
    下载: 导出CSV

    表  3  不同组合计算结果

    Table  3  Calculation results of different combinations

    组合方式设计波长/nm衍射级次m1全波段衍射效率≥95%PIDE
    CaF2(+)-SILICA(-)2152198.9%
    SILICA(+)-CaF2 (-)
    CaF2(+)-MgF2(-)
    MgF2(+)-CaF2 (-)3303698.4%
    MgF2(+)-SILICA(-)
    SILICA(+)-MgF2(-)
    下载: 导出CSV
  • [1] 宋亚军, 韩放. "日盲"紫外成像技术分析及应用展望[J]. 航天电子对抗,2019,35(1):53-60. doi: 10.3969/j.issn.1673-2421.2019.01.013

    SONG Yajun, HAN Fang. Analysis and application of solar blind ultraviolet imaging technology[J]. Aerospace Electronic Warfare,2019,35(1):53-60. doi: 10.3969/j.issn.1673-2421.2019.01.013
    [2] 李炳军, 梁永辉. 紫外告警技术发展现状[J]. 激光与红外,2007,37(10):1033-1035. doi: 10.3969/j.issn.1001-5078.2007.10.001

    LI Bingjun, LIANG Yonghui. Development of ultraviolet warning technology[J]. Laser & Infrared,2007,37(10):1033-1035. doi: 10.3969/j.issn.1001-5078.2007.10.001
    [3] 滕鹤松. 紫外成像技术及其应用[J]. 光电子技术,2001,21(4):294-297. doi: 10.3969/j.issn.1005-488X.2001.04.010

    TENG Hesong. UV imaging technology and its applications[J]. Optoelectronic Technology,2001,21(4):294-297. doi: 10.3969/j.issn.1005-488X.2001.04.010
    [4] 王保华, 李妥妥, 郑国宪. 日盲紫外探测系统研究[J]. 激光与光电子学进展,2014,51(2):159-164.

    WANG Baohua, LI Tuotuo, ZHENG Guoxian. Research of solar blind ultraviolet detection system[J]. Laser & Optoelectronics Progress,2014,51(2):159-164.
    [5] SUN Y, OSTERGAARD J. Application of UV imaging in formulation development[J]. Pharmaceutical Research,2017,34(5):929-940. doi: 10.1007/s11095-016-2047-5
    [6] 张建勇, 钟生东. 紫外线技术在军事工程技术中的应用[J]. 光学技术,2000,26(4):308-312. doi: 10.3321/j.issn:1002-1582.2000.04.027

    ZHANG Jianyong, ZHONG Shengdong. Application of ultraviolet in military engineering[J]. Optoelectronic Technology,2000,26(4):308-312. doi: 10.3321/j.issn:1002-1582.2000.04.027
    [7] 郝瑞亭, 刘焕林. 紫外探测器及其研究进展[J]. 光电子技术,2004,24(2):129-133.

    HAO Ruiting, LIU Huanlin. Ultraviolet detectors and their developments[J]. Optoelectronic Technology,2004,24(2):129-133.
    [8] 丁家奎, 王振鹏, 宋真真, 等. 快焦比长焦距日盲紫外光学系统设计[J]. 激光与光电子学进展,2020,57(19):220-224.

    DING Jiakui, WANG Zhenpeng, SONG Zhenzhen, et al. Design of solar blind ultraviolet optical system with fast focal ratio and long focal length[J]. Laser & Optoelectronics Progress,2020,57(19):220-224.
    [9] 高旭东, 崔庆丰, 郑汉青, 等. 宽温度范围的深紫外光学系统无热化设计[J]. 光学学报,2020,40(17):148-156.

    GAO Xudong, CUI Qingfeng, ZHENG Hanqing, et al. Athermalization design of deep ultraviolet optical system with wide temperature range[J]. Acta Optica Sinica,2020,40(17):148-156.
    [10] 叶井飞, 朱润徽, 马梦聪, 等. 紫外宽光谱大相对孔径光学系统设计[J]. 应用光学,2021,42(5):761-766. doi: 10.5768/JAO202142.0501001

    YE Jingfei, ZHU Runhui, MA Mengcong, et al. Design of UV optical system with wide ultraviolet spectrum and large relative aperture[J]. Journal of Applied Optics,2021,42(5):761-766. doi: 10.5768/JAO202142.0501001
    [11] 王淼鑫, 程宏昌, 李进波. 基于日盲紫外像增强器的大孔径透射式紫外光学系统设计[J]. 红外技术,2021,43(2):127-130.

    WANG Miaoxin, CHENG Hongchang, LI Jinbo. Design of large aperture transmission ultraviolet optical system based on solar-blind ultraviolet image intensifier[J]. Infrared Technology,2021,43(2):127-130.
    [12] KANWAL S, WEN J, YU B, et al. High-efficiency, broadband, near diffraction-limited, dielectric metalens in ultraviolet spectrum[J]. Nanomaterials,2020,10(3):490. doi: 10.3390/nano10030490
    [13] EHRT D. Deep-UV materials[J]. Advanced Optical Technologies,2018,7(4):225-242. doi: 10.1515/aot-2018-0023
    [14] 赵丽东. 多层衍射光学设计理论和应用研究[D]. 吉林: 长春理工大学, 2019.

    ZHAO Lidong. Studies on design theory and application of multi-layer diffractive optics[D]. Changchun: Changchun University of Science and Technology, 2019.
    [15] 颜树华. 衍射微光学设计[M]. 北京: 国防工业出版社, 2011: 150-152.

    YAN Shuhua. Design of diffractive micro-optics[M]. Beijing: National Defense Industry Press, 2011: 150-152.
    [16] 张以谟. 应用光学[M]. 4版. 北京: 电子工业出版社, 2015: 238-248.

    ZHANG Yimo. Applied optics[M]. 4th ed. Beijing: Electronic Industry Press, 2015: 238-248.
    [17] 杨亮亮, 刘成林, 沈法华, 等. 工作在一定入射角度范围内镀有增透膜的衍射光学元件的衍射效率研究[J]. 光学学报,2021,41(12):43-52.

    YANG Liangliang, LIU Chenglin, SHEN Fahua, et al. Diffraction efficiency of diffractive optical elements with antireflection coatings within a certain incident angle range[J]. Acta Optica Sinica,2021,41(12):43-52.
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  276
  • HTML全文浏览量:  128
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-19
  • 修回日期:  2022-07-20
  • 网络出版日期:  2023-03-04
  • 刊出日期:  2023-05-15

目录

    /

    返回文章
    返回