Ultraviolet relay optical system with wide spectrum based on diffractive elements
-
摘要:
紫外像增强器在电晕检测、战略国防、科学研究等领域具有广泛的应用,但由于与其配合使用的紫外光学镜头可用材料匮乏,存在色差校正困难等问题,难以满足宽光谱应用需求。论文分析了单层衍射元件和双层衍射元件在宽波段紫外光学系统中的适用性,并各设计了一套宽光谱、高分辨率的紫外光学系统。单层衍射紫外光学系统的工作波长范围为230 nm~280 nm,在截止频率60 lp·mm−1处调制传递函数(MTF)值优于0.47;双层衍射紫外光学系统的工作波长范围为200 nm~400 nm,在截止频率60 lp·mm−1处MTF值优于0.49。设计结果表明:衍射元件能够有效校正紫外光谱色差,与现有宽光谱紫外系统相比,该文设计的光学系统为中继成像系统,并且具有更宽的紫外光谱范围与更高的成像分辨率。
Abstract:Ultraviolet (UV) image intensifiers are widely used in corona detection, strategic national defense, scientific research and other fields. However, due to the lack of available materials for the UV optical lens and the difficulty of chromatic aberration correction, it is difficult to meet the needs of wide spectrum applications. The applicability of single-layer diffractive optical element (DOE) and double-layer diffractive optical element in broadband UV optical system was analyzed. A set of UV optical system with the wide spectrum and the high resolution were designed respectively. The working wavelength range of the single-layer diffractive UV optical system is 230 nm~280 nm, and the modulation transfer function (MTF) value at the cut-off frequency of 60 lp·mm−1 is better than 0.47. The working wavelength range of the double-layer diffractive UV optical system is 200 nm~400 nm, and the MTF value at the cut-off frequency of 60 lp·mm−1 is better than 0.49. The design results show that the DOE can effectively correct the chromatic aberration of the UV spectrum. Compared with the existing wide spectrum UV system, the designed optical systems are relay imaging systems with wider UV spectral range and higher imaging resolution.
-
-
表 1 单层衍射紫外光学系统设计参数
Table 1 Design parameters of UV optical system with SLDOE
参数 数值 工作波段/nm 230~280 DOE设计波长/nm 250 成像比例 2:1 视场(像高)/mm 20 F数 3 MTF@60 lp·mm−1 >0.4 后工作距/mm >45 石英保护玻璃厚度/mm 5.5 系统总长/mm <200 表 2 双层衍射紫外光学系统设计参数
Table 2 Design parameters of UV optical system with double-layer DOE
参数 数值 工作波段/nm 200~400 DOE设计波长/nm 215 成像比例 2:1 视场(像高)/mm 20 F数 3.5 MTF@60 lp·mm−1 >0.4 后工作距/mm >45 石英保护玻璃厚度/mm 5.5 系统总长/mm <260 表 3 不同组合计算结果
Table 3 Calculation results of different combinations
组合方式 设计
波长/nm衍射
级次m1全波段衍射
效率≥95%PIDE CaF2(+)-SILICA(-) 215 21 是 98.9% SILICA(+)-CaF2 (-) — — 否 — CaF2(+)-MgF2(-) — — 否 — MgF2(+)-CaF2 (-) 330 36 是 98.4% MgF2(+)-SILICA(-) — — 否 — SILICA(+)-MgF2(-) — — 否 — -
[1] 宋亚军, 韩放. "日盲"紫外成像技术分析及应用展望[J]. 航天电子对抗,2019,35(1):53-60. doi: 10.3969/j.issn.1673-2421.2019.01.013 SONG Yajun, HAN Fang. Analysis and application of solar blind ultraviolet imaging technology[J]. Aerospace Electronic Warfare,2019,35(1):53-60. doi: 10.3969/j.issn.1673-2421.2019.01.013
[2] 李炳军, 梁永辉. 紫外告警技术发展现状[J]. 激光与红外,2007,37(10):1033-1035. doi: 10.3969/j.issn.1001-5078.2007.10.001 LI Bingjun, LIANG Yonghui. Development of ultraviolet warning technology[J]. Laser & Infrared,2007,37(10):1033-1035. doi: 10.3969/j.issn.1001-5078.2007.10.001
[3] 滕鹤松. 紫外成像技术及其应用[J]. 光电子技术,2001,21(4):294-297. doi: 10.3969/j.issn.1005-488X.2001.04.010 TENG Hesong. UV imaging technology and its applications[J]. Optoelectronic Technology,2001,21(4):294-297. doi: 10.3969/j.issn.1005-488X.2001.04.010
[4] 王保华, 李妥妥, 郑国宪. 日盲紫外探测系统研究[J]. 激光与光电子学进展,2014,51(2):159-164. WANG Baohua, LI Tuotuo, ZHENG Guoxian. Research of solar blind ultraviolet detection system[J]. Laser & Optoelectronics Progress,2014,51(2):159-164.
[5] SUN Y, OSTERGAARD J. Application of UV imaging in formulation development[J]. Pharmaceutical Research,2017,34(5):929-940. doi: 10.1007/s11095-016-2047-5
[6] 张建勇, 钟生东. 紫外线技术在军事工程技术中的应用[J]. 光学技术,2000,26(4):308-312. doi: 10.3321/j.issn:1002-1582.2000.04.027 ZHANG Jianyong, ZHONG Shengdong. Application of ultraviolet in military engineering[J]. Optoelectronic Technology,2000,26(4):308-312. doi: 10.3321/j.issn:1002-1582.2000.04.027
[7] 郝瑞亭, 刘焕林. 紫外探测器及其研究进展[J]. 光电子技术,2004,24(2):129-133. HAO Ruiting, LIU Huanlin. Ultraviolet detectors and their developments[J]. Optoelectronic Technology,2004,24(2):129-133.
[8] 丁家奎, 王振鹏, 宋真真, 等. 快焦比长焦距日盲紫外光学系统设计[J]. 激光与光电子学进展,2020,57(19):220-224. DING Jiakui, WANG Zhenpeng, SONG Zhenzhen, et al. Design of solar blind ultraviolet optical system with fast focal ratio and long focal length[J]. Laser & Optoelectronics Progress,2020,57(19):220-224.
[9] 高旭东, 崔庆丰, 郑汉青, 等. 宽温度范围的深紫外光学系统无热化设计[J]. 光学学报,2020,40(17):148-156. GAO Xudong, CUI Qingfeng, ZHENG Hanqing, et al. Athermalization design of deep ultraviolet optical system with wide temperature range[J]. Acta Optica Sinica,2020,40(17):148-156.
[10] 叶井飞, 朱润徽, 马梦聪, 等. 紫外宽光谱大相对孔径光学系统设计[J]. 应用光学,2021,42(5):761-766. doi: 10.5768/JAO202142.0501001 YE Jingfei, ZHU Runhui, MA Mengcong, et al. Design of UV optical system with wide ultraviolet spectrum and large relative aperture[J]. Journal of Applied Optics,2021,42(5):761-766. doi: 10.5768/JAO202142.0501001
[11] 王淼鑫, 程宏昌, 李进波. 基于日盲紫外像增强器的大孔径透射式紫外光学系统设计[J]. 红外技术,2021,43(2):127-130. WANG Miaoxin, CHENG Hongchang, LI Jinbo. Design of large aperture transmission ultraviolet optical system based on solar-blind ultraviolet image intensifier[J]. Infrared Technology,2021,43(2):127-130.
[12] KANWAL S, WEN J, YU B, et al. High-efficiency, broadband, near diffraction-limited, dielectric metalens in ultraviolet spectrum[J]. Nanomaterials,2020,10(3):490. doi: 10.3390/nano10030490
[13] EHRT D. Deep-UV materials[J]. Advanced Optical Technologies,2018,7(4):225-242. doi: 10.1515/aot-2018-0023
[14] 赵丽东. 多层衍射光学设计理论和应用研究[D]. 吉林: 长春理工大学, 2019. ZHAO Lidong. Studies on design theory and application of multi-layer diffractive optics[D]. Changchun: Changchun University of Science and Technology, 2019.
[15] 颜树华. 衍射微光学设计[M]. 北京: 国防工业出版社, 2011: 150-152. YAN Shuhua. Design of diffractive micro-optics[M]. Beijing: National Defense Industry Press, 2011: 150-152.
[16] 张以谟. 应用光学[M]. 4版. 北京: 电子工业出版社, 2015: 238-248. ZHANG Yimo. Applied optics[M]. 4th ed. Beijing: Electronic Industry Press, 2015: 238-248.
[17] 杨亮亮, 刘成林, 沈法华, 等. 工作在一定入射角度范围内镀有增透膜的衍射光学元件的衍射效率研究[J]. 光学学报,2021,41(12):43-52. YANG Liangliang, LIU Chenglin, SHEN Fahua, et al. Diffraction efficiency of diffractive optical elements with antireflection coatings within a certain incident angle range[J]. Acta Optica Sinica,2021,41(12):43-52.
-
期刊类型引用(1)
1. 王珊珊,殷淑静,梁海锋,韩军. 金催化的硅纳米线的可控制备及光学特性研究. 应用光学. 2019(05): 738-745 . 本站查看
其他类型引用(4)