High-sensitivity refractive index sensor based on FMF-CLF-FMF optical fiber structure
-
摘要: 光纤折射率传感器广泛应用于各种复杂环境的监测。设计了一种基于少模光纤(few-mode fiber,FMF)–无芯光纤(coreless fiber,CLF)–FMF结构的高灵敏度折射率传感器。该传感器由2小段FMF之间熔接1段减薄的CLF组成马赫-增德尔干涉仪(Mach–Zehnder interference,MZI),测量外界折射率,利用光纤布拉格光栅(fiber Bragg grating,FBG)进行温度补偿。MZI干涉光谱中的谐振波谷同时受折射率和温度影响,FBG只受温度的影响。利用MZI和FBG的折射率和温度灵敏度系数构建灵敏度矩阵,实现折射率和温度的同步测量。实验结果表明,MZI折射率灵敏度为345.66 nm/RIU,温度灵敏度为0.0134 nm/℃;FBG的温度灵敏度为0.0104 nm/℃。Abstract: Optical fiber refractive index sensor is widely used for monitoring in various complex environments. A high-sensitivity refractive index sensor based on the structure of few-mode fiber (FMF)-coreless fiber (CLF)-FMF was designed, and the experimental verification was carried out. The sensor consisted of a thinned section of CLF fused between two small sections of FMF to form a Mach-Zehnder interferometer (MZI) for measuring external refractive index, and the fiber Bragg grating (FBG) was used for temperature compensation. The resonance trough of interference spectrum generated by MZI structure was affected by both refractive index and temperature, while FBG was only affected by temperature. The sensitivity matrix was constructed by using the refractive index and temperature sensitivity coefficients of MZI and FBG to realize the simultaneous measurement of refractive index and temperature. Experimental results show that the refractive index sensitivity of MZI is 345.66 nm/RIU, and the temperature sensitivity is 0.0134 nm/℃. Meanwhile, the temperature sensitivity of FBG is 0.0104 nm/℃.
-
-
表 1 传感器实际测量结果及误差
Table 1 Actual measurement results and errors of sensor
温度和折射率 FBG理论
波长值/nmFBG实测
波长值/nmFBG波长误差/nm MZI理论
波长值/nmMZI实测
波长值/nmMZI波长误差/nm 30°C,1.338 0 1 537.114 1 537.109 −0.005 1 552.149 1 552.160 0.011 50°C,1.338 0 1 537.322 1 537.330 0.008 1 552.417 1 552.423 0.006 30°C,1.347 2 1 537.114 1 537.107 −0.007 1 555.329 1 555.315 −0.014 50°C,1.347 2 1 537.322 1 537.323 0.001 1 555.597 1 555.606 0.009 -
[1] 韩军, 高波, 张芳, 等. 变间隙法布里-珀罗干涉仪光程差线性分析[J]. 应用光学,2021,42(3):494-498. doi: 10.5768/JAO202142.0302007 HAN Jun, GAO Bo, ZHANG Fang, et al. Linear analysis of optical path difference of variable-gap Fabry-Perot interferometer[J]. Journal of Applied Optics,2021,42(3):494-498. doi: 10.5768/JAO202142.0302007
[2] LIU Tianqi, WANG Jing, LIAO Yipeng, et al. Splicing point tapered fiber Mach-Zehnder interferometer for simultaneous measurement of temperature and salinity in seawater[J]. Optics Express,2019,27(17):23905-23918. doi: 10.1364/OE.27.023905
[3] LIN Ziting, LYU Riqing, ZHAO Yong, et al. High-sensitivity salinity measurement sensor based on no-core fiber[J]. Sensors and Actuators A:Physical,2020,305(2):111947.
[4] WAN Hongdan, ZHANG Jiahe, CHEN Qian, et al. An active fiber sensor based on modal interference in few-mode fibers for dual-parameter detection[J]. Optics Communications,2021,481(15):126498.
[5] LIU Chao, YANG Lin, LU Xili, et al. Mid-infrared surface plasmon resonance sensor based on photonic crystal fibers[J]. Optics Express,2017,25(13):14227-14237. doi: 10.1364/OE.25.014227
[6] ZHANG Weihua, GAO Wenlin, TONG Zhengrong, et al. Mach-Zehnder interferometer cascaded with FBG for simultaneous measurement of RI and temperature[J]. Optics Communications,2020,466(13):125624.
[7] ZHANG Ming, HU Zhangjun, WANG Xiao, et al. Power-type liquid-level sensor for high refractive index liquid based on long-period fiber grating[J]. Sensors and Actuators A:Physical,2021,324:112652. doi: 10.1016/j.sna.2021.112652
[8] FIORIN R, DE OLIVEIRA V, KALINOWSKI H J, et al. FBG-assisted micro-channel for refractive index measurements[J]. IEEE Photonics Technology Letters,2021,33(1):35-38. doi: 10.1109/LPT.2020.3043088
[9] REN Feifei, ZHANG Weifang, LI Yingwu, et al. The temperature compensation of FBG sensor for monitoring the stress on hole-edge[J]. IEEE Photonics Journal,2018,10(4):1-9.
[10] DEL VILLAR I, SOCORRO A B, CORRES J M, et al. Optimization of sensors based on multimode interference in single-mode-multimode-single-mode structure[J]. Journal of Lightwave Technology,2013,31(22):3460-3468. doi: 10.1109/JLT.2013.2283943
[11] CHEN Yaofei, HAN Qun, LIU Tiegen, et al. Self-temperature-compensative refractometer based on singlemode-multimode-singlemode fiber structure[J]. Sensors and Actuators B:Chemical,2015,212:107-111. doi: 10.1016/j.snb.2015.01.080
[12] RIZA M A, GO Y I, HARUN S W, et al. FBG sensors for environmental and biochemical applications-a review[J]. IEEE Sensors Journal,2020,20(14):7614-7627. doi: 10.1109/JSEN.2020.2982446
[13] STAWSKA H I, POPENDA M A. Refractive index sensors based on long-period grating in a negative curvature hollow-core fiber[J]. Sensors,2021,21(5):1803. doi: 10.3390/s21051803
[14] MARTINS T J M, MARQUES M B, ROY P, et al. Temperature-independent multi-parameter measurement based on a tapered Bragg fiber[J]. IEEE Photonics Technology Letters,2016,28(14):1565-1568. doi: 10.1109/LPT.2016.2555300
[15] WANG Fang, WANG Ruifang, WANG Xu, et al. Three-core fiber cascade asymmetric dual-taper robust structure for the simultaneous measurement of a mass concentration of a glucose solution and temperature[J]. Optics Communications,2020,461:125227. doi: 10.1016/j.optcom.2019.125227
[16] GAO Shuai, JI Chongke, NING Qiuyi, et al. High-sensitive Mach-Zehnder interferometric temperature fiber-optic sensor based on core-offset splicing technique[J]. Optical Fiber Technology,2020,56:102202. doi: 10.1016/j.yofte.2020.102202
[17] YANG Biyao, NIU Yanxiong, YANG Bowen, et al. High sensitivity balloon-like refractometric sensor based on singlemode-tapered multimode-singlemode fiber[J]. Sensors and Actuators A:Physical,2018,281:42-47. doi: 10.1016/j.sna.2018.08.034
[18] TONG Zhengrong, ZHONG Yimei, WANG Xue, et al. Research on simultaneous measurement of refractive index and temperature comprising few mode fiber and spherical structure[J]. Optics Communications,2018,421:1-6. doi: 10.1016/j.optcom.2018.03.057
[19] DONG Yue, XIAO Shiying, WU Beilei, et al. Refractive index and temperature sensor based on D-shaped fiber combined with a fiber Bragg grating[J]. IEEE Sensors Journal,2019,19(4):1362-1367. doi: 10.1109/JSEN.2018.2880305
[20] SHI Jia, SU Genghua, XU Degang, et al. A dual-parameter sensor using a long-period grating concatenated with polarization maintaining fiber in Sagnac loop[J]. IEEE Sensors Journal,2016,16(11):4326-4330. doi: 10.1109/JSEN.2016.2544305
[21] ZHU Yongjie, ZHENG Jie, DENG Hongchang, et al. Refractive index and temperature measurement by cascading macrobending fiber and a sealed alternated SMF-MMF structure[J]. Optics Communications,2021,485:126738. doi: 10.1016/j.optcom.2020.126738
[22] WANG Fang, PANG Kaibo, MA Tao, et al. Folded-tapered multimode-no-core fiber sensor for simultaneous measurement of refractive index and temperature[J]. Optics & Laser Technology,2020,130:106333.
[23] DAI Bin, SHEN Xiang, HU Xiongwei, et al. Temperature-insensitive refractive index sensor with etched microstructure fiber[J]. Sensors (Basel, Switzerland),2019,19(17):3749. doi: 10.3390/s19173749
[24] DUAN Li, ZHANG Peng, TANG Ming, et al. Heterogeneous all-solid multicore fiber based multipath Michelson interferometer for high temperature sensing[J]. Optics Express,2016,24(18):20210-20218. doi: 10.1364/OE.24.020210
[25] QUAN Xiaohong, FRY E S. Empirical equation for the index of refraction of seawater[J]. Applied Optics,1995,34(18):3477-3480. doi: 10.1364/AO.34.003477
-
期刊类型引用(5)
1. 方俊文,司娟宁,王昊伟. 基于张正友标定法的系统姿态调节方法. 传感器世界. 2024(11): 15-19 . 百度学术
2. 卢荣胜,吴昂,张腾达,王永红. 自动光学(视觉)检测技术及其在缺陷检测中的应用综述. 光学学报. 2018(08): 23-58 . 百度学术
3. 南瑞亭,陈冬雪. 轮胎剪切散斑干涉包裹相位图缺陷识别方法. 中国测试. 2017(04): 114-117 . 百度学术
4. 郭媛,刘丹丹,毛琦. 基于剪切散斑干涉技术的物体变形动态检测. 应用光学. 2017(05): 777-783 . 本站查看
5. 王永红,吕有斌,高新亚,但西佐,杨连祥. 剪切散斑干涉技术及应用研究进展. 中国光学. 2017(03): 300-309 . 百度学术
其他类型引用(14)