全反射棱镜式激光陀螺标度因数补偿技术

Scale factor compensation technology of laser gyro with total reflection prism

  • 摘要: 针对全反射棱镜式激光陀螺标度因数随温度周期性变化的现象,根据矩阵光学方法研究了稳频状态下温度变化对环形激光面积的影响,获得了全反射棱镜式激光陀螺标度因数与稳频电压的关系,并得出光束偏移是引起标度因数随温度周期性变化的原因。根据标度因数与稳频电压的关系,建立了全反射棱镜式激光陀螺标度因数补偿模型,通过实验对比了补偿前后标度因数的非线性度。结果表明,根据该补偿模型对全反射棱镜式激光陀螺标度因数进行补偿,标度因数非线性度提高了一个数量级以上,对提高全反射棱镜式激光陀螺的性能具有一定的参考价值。

     

    Abstract: In view of the phenomenon that the scale factors of the laser gyro with total reflection prism changes periodically with temperature, the influence of temperature changes on the ring laser area under the condition of frequency stabilization was studied by matrix optical method. The relationship between the scale factors of the laser gyro with total reflection prism and the frequency stabilization voltage was obtained, and it was pointed out that the beam offset was the cause of the periodic change of scale factors with temperature. According to the relationship between the scale factors and the frequency stabilization voltage, the scale factor compensation model of the laser gyro with total reflection prism was established, and the nonlinearity of the scale factors before and after compensation was compared through experiments. The results show that the nonlinearity of the scale factors is increased by more than one order of magnitude by using the proposed model to compensate the scale factors of the laser gyro with total reflection prism. The research has certain reference value for improving the performance of laser gyro with total reflection prism.

     

/

返回文章
返回