Abstract:
To improve the calibration efficiency and accuracy of line structured light sensor, a plane checkerboard and concentric circle complementary line structured light calibration system was designed integrating with self-backlighting and pose-adjustable functions. Based on the geometric relationship between the real projection position of the concentric circle center and the center of projection ellipse, the nonlinear optimized compensation model for eccentric error was established, which precisely determined the eccentric error compensation position of the circle center under the perspective projection. Compared with the traditional calibration method, the proposed method reduced the re-projection error by 84.7% and effectively solved the problem of high-precision calibration for eccentric error compensation of circular markers. By combining the plane passing through the optical center and the center line of the light bar with the target plane in the camera coordinate system, the coordinate information of the spatial intersection lines was obtained for many times to increase the feature points, and the problem of lower calibration precision of plane fitting due to the fewer feature points was solved by using the least square method to fit the optic plane equation. In complex environments, the average error of the outer diameter of the large-size grinding wheel is 0.005 1 mm measured by repeated experiments, and the results show that the designed calibration system has certain precision, simplicity, and practicability.