留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于紫外差分-自适应干扰对消的NO浓度高精度检测技术

邓勤

邓勤. 基于紫外差分-自适应干扰对消的NO浓度高精度检测技术[J]. 应用光学, 2022, 43(6): 1054-1060. doi: 10.5768/JAO202243.0604003
引用本文: 邓勤. 基于紫外差分-自适应干扰对消的NO浓度高精度检测技术[J]. 应用光学, 2022, 43(6): 1054-1060. doi: 10.5768/JAO202243.0604003
DENG Qin. High-precision detection technology of NO concentration based on UV differential-adaptive interference cancellation[J]. Journal of Applied Optics, 2022, 43(6): 1054-1060. doi: 10.5768/JAO202243.0604003
Citation: DENG Qin. High-precision detection technology of NO concentration based on UV differential-adaptive interference cancellation[J]. Journal of Applied Optics, 2022, 43(6): 1054-1060. doi: 10.5768/JAO202243.0604003

基于紫外差分-自适应干扰对消的NO浓度高精度检测技术

doi: 10.5768/JAO202243.0604003
基金项目: 中煤科工集团重庆研究院有限公司重点项目(2019ZDXM03);中国煤炭科工集团重点项目(2021-2-TD-ZD009)
详细信息
    作者简介:

    邓勤(1987—),女,硕士研究生,助理研究员,主要从事粉尘及大气污染物监测治理技术研究。E-mail:shard1025@126.com

  • 中图分类号: TN247;X511

High-precision detection technology of NO concentration based on UV differential-adaptive interference cancellation

  • 摘要: 为实现机动车尾气高精度监测,提出一种高精度宽量程NO测量方法。针对尾气中SO2及NO在紫外波段存在吸收峰重合从而无法直接进行单组分气体反演问题,首先用紫外差分光学吸收光谱(ultra-violet differential optical absorption spectroscopy, UV-DOAS)法计算得到混合气体在NO敏感波段(200 nm~230 nm)的差分光学密度(differential optical density, DOD),并引入自适应干扰对消技术以实现混合气体DOD的快速分离,最终利用最小二乘法对分离出的NO进行浓度反演。该方法可实现100×10−6~3 000×10−6范围内NO浓度(气体的体积分数)快速反演,经测试,在100×10−6~200×10−6浓度范围内反演相对误差绝对值小于10%,在300×10−6~3000×10−6浓度范围内,反演相对误差绝对值小于5%。该方法具有测量量程大、速度快的特点,可满足汽车尾气中3 000×10−6范围内NO浓度测量要求。
  • 图  1  自适应干扰对消

    Fig.  1  Schematic of adaptive interference cancellation

    图  2  实验系统框图

    Fig.  2  Block diagram of experimental system

    图  3  实验系统实物图

    ① 氘灯;②光纤;③气室;④ 光谱仪;⑤计算机;⑥配气系统;⑦ 气瓶;⑧微阀 ; ⑨气体管路。

    Fig.  3  Physical drawing of experimental system

    图  4  NO、SO2及混合气体的差分光学厚度图

    Fig.  4  Diagram of DOD of NO, SO2 and mixed gas

    图  5  3条参考曲线

    Fig.  5  Three reference curves

    表  1  参考曲线中不同浓度气体DOD占比

    Table  1  DOD ratio of gas at different concentrations in reference curves

    DODSO2浓度值/10−6
    1020304050607080
    参考曲线10.60.10.10.10.1000
    参考曲线200.10.10.60.10.100
    参考曲线30000.10.10.10.60.1
    下载: 导出CSV

    表  2  第1组实验NO差分光学厚度计算值与标准值相关系数

    Table  2  Correlation coefficient between calculated value and standard value of NO differential optical thickness in the first group of experiments

    标准值(NO/SO2)/10−6200/10200/20200/30200/40200/50200/60200/70200/80
    相关系数
    (参考曲线1)
    0.998 0.999 0.997 0.994 0.990 0.984 0.979 0.974
    相关系数
    (参考曲线2)
    0.997 0.997 0.998 0.998 0.996 0.994 0.991 0.986
    相关系数
    (参考曲线3)
    0.993 0.991 0.991 0.993 0.996 0.998 0.997 0.996
    下载: 导出CSV

    表  3  第2组实验NO计算结果

    Table  3  Calculation results of NO in the second group of experiments

    标准值(NO/SO2)/10−6100/15200/40300/30300/40400/10400/60500/20500/40
    与标准曲线相关系数0.9920.9930.9930.9950.9950.9980.9950.996
    反演NO浓度c/10−693.35183.44294.82293.55391.74387.66493.75490.89
    相对误差ε/%−6.65−8.28−1.73−2.15−2.07−3.09−1.25−1.82
    下载: 导出CSV

    表  4  第2组实验NO计算结果

    Table  4  Calculation results of NO in the second group of experiments

    标准值 (NO/SO2)/10−6600/25600/35700/40700/70800/45800/801 000/501 500/35
    与标准曲线相关系数0.9950.9960.9970.9990.9980.9980.9980.997
    反演NO浓度c/10−6601.95597.72687.06691.85781.60786.69986.661 468.05
    相对误差ε/%0.33−0.38−1.85−1.16−2.30−1.66−1.33−2.13
    下载: 导出CSV

    表  5  第2组实验NO计算结果

    Table  5  Calculation results of NO in the second group of experiments

    标准值(NO/SO2)/10−61 700/451 900/352 100/702 300/802 500/502 700/252 900/403 000/55
    相关系数0.9980.9970.9990.9980.9980.9970.9970.999
    反演NO浓度c/10−61 647.891 856.462 041.952 218.302 449.082 595.232 776.822 891.79
    相对误差ε/%3.072.292.763.552.043.884.253.61
    下载: 导出CSV
  • [1] 中华人民共和国公安部交通管理局. 全国机动车保有量及驾驶人数据统计(截止2021)[EB/OL]. http://www.gov.cn/xinwen/2022-01/11/content_5667669.htm, 2022.

    Ministry of Public Security, PRC Traffic Management Bureau. National motor vehicle ownership and driver data statistics[EB/OL]. http://www.gov.cn/xinwen/2022-01/11/content_5667669.htm, 2022.
    [2] 中华人民共和国生态环境部&国家统计局及农村农业部. 第二次全国污染源普查公报[EB/OL]. https://www.mee.gov.cn/xxgk2018/xxgk/xxgk01/202006/W020200610353985963290.pdf, 2020.

    Ministry of Ecology and Environment, PRC & National Bureau of Statistics & Ministry of Rural Agriculture. Bulletin of the second national census of pollution sources[EB/OL]. https://www.mee.gov.cn/xxgk2018/xxgk/xxgk01/202006/W020200610353985963290.pdf, 2020.
    [3] ZHOU Yong, GAO Chao, GUO Yongcai. UV assisted ultrasensitive trace NO2 gas sensing based on few-layer MoS2 nanosheet–ZnO nanowire heterojunctions at room temperature[J]. Journal of Materials Chemistry A,2018,6(22):10286-10296. doi: 10.1039/C8TA02679C
    [4] ZHOU Yong, LIU Guoqing, ZHU Xiangyi, et al. Ultrasensitive NO2 gas sensing based on rGO/MoS2 nanocomposite film at low temperature[J]. Sensors and Actuators B:Chemical,2017,251:280-290. doi: 10.1016/j.snb.2017.05.060
    [5] AFOLARANMI S O, RAMIS F B, MARTINEZ L J L. Technology review: prototyping platforms for monitoring ambient conditions[J]. International Journal of Environmental Health Research,2018,28(3):253-279. doi: 10.1080/09603123.2018.1468423
    [6] STOCKWELL C E, KUPC A, WITKOWSKI B, et al. Characterization of a catalyst-based conversion technique to measure total particulate nitrogen and organic carbon and comparison to a particle mass measurement instrument[J]. Atmospheric Measurement Techniques,2018,11(5):2749-2768. doi: 10.5194/amt-11-2749-2018
    [7] MIRONENKO V R, KURITSYN Y A, LIGER V V, et al. Data processing algorithm for diagnostics of combustion using diode laser absorption spectrometry[J]. Applied Spectroscopy,2018,72(2):199-208. doi: 10.1177/0003702817732252
    [8] QU Z, WERHAHN O, EBERT V. Thermal boundary layer effects on line-of-sight tunable diode laser absorption spectroscopy (TDLAS) gas concentration measurements[J]. Applied Spectroscopy,2018,72(6):853-862. doi: 10.1177/0003702817752112
    [9] 曲奉东. 基于纳米尺度金属氧化物异质结构的气体传感器的研究[D]. 吉林: 吉林大学, 2020.

    QU Fengdong. Research on gas sensors based on nanoscale metal oxide heterostructures[D]. Jilin: Jilin University, 2020.
    [10] DINH T, KIM D, AHN J, et al. A potential approach to compensate the gas Interference for the analysis of NO by a non-dispersive infrared technique[J]. Analytical Chemistry,2020,92(18):12152-12159. doi: 10.1021/acs.analchem.0c00471
    [11] SUN W Y, ZENG Y, LIU Q W. Cross-interference correction and simultaneous multi-gas analysis based on infrared absorption[J]. Chinese Physics B,2012,21(9):168-175.
    [12] WANG Hairong, ZHANG Wei, YOU Liudong, et al. Back propagation neural network model for temperature and humidity compensation of a non dispersive infrared methane sensor[J]. Instrumentation science & technology,2013,41(6):608-618.
    [13] GUO Yuchen, QIU Xuanbing, LI Ning, et al. A portable laser-based sensor for detecting H2S in domestic natural gas[J]. Infrared Physics & Technology,2020,105:103153.
    [14] HEDLEY K J, SHEPSON P B, BARRFFI L, et al. An evaluation of integrating techniques for measuring atmospheric nitrogen dioxide[J]. International Journal of Environmental Analytical Chemistry,1994,54(3):167-181. doi: 10.1080/03067319408034087
    [15] LI Jingsong, YU Benli, FISCHER H. Wavelet transform based on the optimal wavelet pairs for tunable diode laser absorption spectroscopy signal processing[J]. Applied Spectroscopy,2015,69(4):496-506. doi: 10.1366/14-07629
    [16] MAURELLIS A N, LANG R, VAN D Z. A new DOAS parameterization for retrieval of trace gases with highly‐structured absorption spectra[J]. Geophysical Research Letters,2000,27(24):4069-4072. doi: 10.1029/2000GL011825
    [17] WANG H S, ZHANG Y G, WU S H, et al. Using broadband absorption spectroscopy to measure concentration of sulfur dioxide[J]. Applied Physics B,2010,100(3):637-641. doi: 10.1007/s00340-010-4151-2
    [18] XU Feng, ZHANG Yungang, SOMESFALEAN G, et al. Broadband spectroscopic sensor for real-time monitoring of industrial SO2 emissions[J]. Applied Optics,2007,46(13):2503-2506. doi: 10.1364/AO.46.002503
    [19] ZHAO Yu, WANG Xianpei, DAI Dangdang, et al. Partial discharge early-warning through ultraviolet spectroscopic detection of SO2[J]. Measurement Science and Technology,2014,25(3):035002. doi: 10.1088/0957-0233/25/3/035002
    [20] 吕传明. 基于 DOAS 烟气在线监测系统的应用研究[D]. 天津: 天津大学, 2013.

    LYU Chuanming. Research on the application of continuous emission monitoring systems based on DOAS [D]. Tianjin: Tianjin University, 2013.
    [21] 王艳萍, 郭永彩, 凡凤莲, 等. 低浓度 NO 和 SO2 混合气体的测量方法研究[J]. 中国测试,2018,44(11):56-60. doi: 10.11857/j.issn.1674-5124.2018.11.010

    WANG Yanping, GUO Yongcai, FAN Fenglian, et al. Research on measure method of low concentration NO and SO2 gas mixtures[J]. China Measurement & Test,2018,44(11):56-60. doi: 10.11857/j.issn.1674-5124.2018.11.010
    [22] PENG Bo, ZHOU Yong, LIU Guoqing, et al. An ultra-sensitive detection system for sulfur dioxide and nitric oxide based on improved differential optical absorption spectroscopy method[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2020,233:118169. doi: 10.1016/j.saa.2020.118169
    [23] 周斌, 刘文清, 齐峰, 等. 差分吸收光谱法测量大气污染的浓度反演方法研究[J]. 物理学报,2001(9):1818-1823. doi: 10.3321/j.issn:1000-3290.2001.09.036

    ZHOU Bin, LIU Wenqing, QI Feng, et al. Research on concentration inversion method for air pollution measurement by differential absorption spectrometry[J]. Acta Physica Sinica,2001(9):1818-1823. doi: 10.3321/j.issn:1000-3290.2001.09.036
    [24] 刘新元, 谢柏青, 戴远东, 等. 射频SQUID心磁图数据自适应滤波研究[J]. 物理学报,2005(4):1937-1942. doi: 10.3321/j.issn:1000-3290.2005.04.085

    LIU Xinyuan, XIE Baiqing, DAI Yuandong, et al. Research on adaptive filtering of RF SQUID magnetocardiogram data[J]. Acta Physica Sinica,2005(4):1937-1942. doi: 10.3321/j.issn:1000-3290.2005.04.085
    [25] 孟晋丽, 傅有光, 陈翼, 等. 基于自适应滤波的雷达目标-干扰分离技术[J]. 现代雷达,2015,37(4):39-42. doi: 10.3969/j.issn.1004-7859.2015.04.009

    MENG Jinli, FU Youguang, CHEN Yi, et al. Radar target-interference separation technology based on adaptive filtering[J]. Modern Radar,2015,37(4):39-42. doi: 10.3969/j.issn.1004-7859.2015.04.009
    [26] 高鹰, 谢胜利. 一种变步长LMS自适应滤波算法及分析[J]. 电子学报,2001(8):1094-1097. doi: 10.3321/j.issn:0372-2112.2001.08.023

    GAO Ying, XIE Shengli. A variable step size LMS adaptive filtering algorithm and analysis[J]. Acta Electronica Sinica,2001(8):1094-1097. doi: 10.3321/j.issn:0372-2112.2001.08.023
    [27] 靳翼, 邵怀宗. 一种新的变步长LMS自适应滤波算法及其仿真[J]. 信号处理,2010,26(9):1385-1388. doi: 10.3969/j.issn.1003-0530.2010.09.018

    JIN Yi, SHAO Huaizong. A new variable-step LMS adaptive filtering algorithm and its simulation[J]. Journal of Signal Processing,2010,26(9):1385-1388. doi: 10.3969/j.issn.1003-0530.2010.09.018
    [28] 程学珍, 徐景东, 卫阿盈, 等. RLS自适应滤波在信号消噪中的应用[J]. 测试科学与仪器,2014,5(1):32-36.

    CHENG Xuezhen, XU Jingdong, WEI Aying, et al. Application of RLS adaptive filtering in signal denoising[J]. Journal of Measurement Science and Instrumentation,2014,5(1):32-36.
    [29] 马国栋, 阎树田, 贺成柱, 等. 基于LMS算法与RLS算法自适应滤波及仿真分析[J]. 电子设计工程,2014,22(6):43-45. doi: 10.3969/j.issn.1674-6236.2014.06.014

    MA Guodong, YAN Shutian, HE Chengzhu, et al. Adaptive filtering and simulation analysis based on LMS algorithm and RLS algorithm[J]. Electronic Design Engineering,2014,22(6):43-45. doi: 10.3969/j.issn.1674-6236.2014.06.014
  • 加载中
图(5) / 表(5)
计量
  • 文章访问数:  92
  • HTML全文浏览量:  29
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-13
  • 修回日期:  2022-08-03
  • 网络出版日期:  2022-08-05
  • 刊出日期:  2022-11-14

目录

    /

    返回文章
    返回