基于灰度图差分梯度的雾化角测量方法

魏永杰, 李明凯, 王浩然, 张树日

魏永杰, 李明凯, 王浩然, 张树日. 基于灰度图差分梯度的雾化角测量方法[J]. 应用光学, 2022, 43(5): 929-934. DOI: 10.5768/JAO202243.0503001
引用本文: 魏永杰, 李明凯, 王浩然, 张树日. 基于灰度图差分梯度的雾化角测量方法[J]. 应用光学, 2022, 43(5): 929-934. DOI: 10.5768/JAO202243.0503001
WEI Yongjie, LI Mingkai, WANG Haoran, ZHANG Shuri. Spray angle measurement method based on grayscale image differential gradient[J]. Journal of Applied Optics, 2022, 43(5): 929-934. DOI: 10.5768/JAO202243.0503001
Citation: WEI Yongjie, LI Mingkai, WANG Haoran, ZHANG Shuri. Spray angle measurement method based on grayscale image differential gradient[J]. Journal of Applied Optics, 2022, 43(5): 929-934. DOI: 10.5768/JAO202243.0503001

基于灰度图差分梯度的雾化角测量方法

基金项目: 河北省重点研发计划(20326602D);天津市自然科学基金(18JCTPJC56600)
详细信息
    作者简介:

    魏永杰(1971—),男,教授,博士,主要从事光电检测技术方面的研究。E-mail:yj.wei@163.com

  • 中图分类号: TN911

Spray angle measurement method based on grayscale image differential gradient

  • 摘要:

    雾场边界及雾化角作为雾场的重要特性参数,主要通过图像法进行测量。在图像处理过程中,一般是将灰度图转化为二值化图像,然后依次针对二值化图像进行处理和计算。由于雾场的多相流特性,得到的二值化阈值和图像与实际雾场是否一致缺少评判依据。提出根据喷雾的灰度图像直接处理,得到掩模板并作用于灰度图像,采用图像形态学和迭代方法,计算灰度图像的梯度值。通过得到梯度值最大时的灰度图像,计算雾场边界和雾化角。实验表明,该方法提供了一种雾场边界的数值判断依据,通过梯度最大值判断并提取雾场边界,从而通过程序自动实现雾场边界提取与雾化角拟合测量。

    Abstract:

    The spray boundary and spray angle work as important characteristic parameters of spray field, which are mainly measured by image method. In image processing, the grayscale images are generally converted into binary images firstly. Then, the binary images are processed and calculated. Due to the multiphase flow characteristics of spray field, there is no judgement basis whether the obtained binary threshold and the image are consistent with the actual spray field. In order to digitally judge the spray field boundary, it was proposed to process directly according to the grayscale image of the spray. The mask templates were obtained and applied to the grayscale image, and then the gradient value of the grayscale image were calculated and compared by image morphology and iterative method. The spray field boundary and the spray angle were calculated by obtaining the grayscale image when the gradient value was maximum. Experimental results show that the proposed method provides a numerical judgement basis to judge and extract the spray field boundary through the gradient maximum value. Thus, the spray field boundary extraction and the spray angle fitting measurement are realized automatically by the program.

  • 图  1   喷雾灰度图和边缘检测结果

    Figure  1.   Grayscale image of spray and boundary detection results

    图  2   形态学梯度处理结果

    Figure  2.   Gradient processing results by morphology

    图  3   灰度图梯度迭代原理框图

    Figure  3.   Block diagram of gradient iteration on grayscale images

    图  4   喷雾边界迭代结果

    Figure  4.   Iterative results of spray boundary

    图  5   传统二值化雾场边界处理结果

    Figure  5.   Results of traditional binary spray field boundary

    图  6   不同浓度雾场对比结果

    Figure  6.   Comparison results of spray field with different density

    图  7   喷雾角计算结果

    Figure  7.   Calculation results of spray angle

    表  1   灰度梯度迭代数据

    Table  1   Results of gradient iteration on grayscale images

    迭代次数灰度梯度迭代次数灰度梯度
    10.965918.461
    20.956105.434
    31.345113.689
    41.036122.597
    51.466132.320
    61.861141.103
    72.503151.592
    8100.094161.167
    下载: 导出CSV
  • [1] 刘祺, 夏津, 黄忠, 等. 航空发动机离心式喷嘴宏观喷雾特性[J]. 推进技术,2021,42(2):362-371.

    LIU Qi, XIA Jin, HUANG Zhong, et al. Macro spray characteristics of pressure-swirl nozzle in aero-engine[J]. Journal of Propulsion Technology,2021,42(2):362-371.

    [2] 梁博健, 高殿荣, 毋少峰, 等. 关键结构参数对高压除鳞喷嘴性能影响的研究[J]. 液压与气动,2016(6):24-29. doi: 10.11832/j.issn.1000-4858.2016.06.005

    LIANG Bojian, GAO Dianrong, WU Shaofeng, et al. Influence of key structure parameters on the descaling nozzle performance[J]. Chinese Hydraulics & Pneumatics,2016(6):24-29. doi: 10.11832/j.issn.1000-4858.2016.06.005

    [3] 蒋仲安, 许峰, 王亚朋, 等. 空气雾化喷嘴雾化机理及影响因素实验分析[J]. 中南大学学报(自然科学版),2019,50(10):2360-2367. doi: 10.11817/j.issn.1672-7207.2019.10.004

    JIANG Zhong'an, XU Feng, WANG Yapeng, et al. Experimental analysis of atomization mechanism and influencing factors of air atomizing nozzle[J]. Journal of Central South University (Science and Technology),2019,50(10):2360-2367. doi: 10.11817/j.issn.1672-7207.2019.10.004

    [4] 杨国华, 王凯, 雷凡培, 等. 螺旋形实心锥喷嘴雾化特性试验研究[J]. 热能动力工程,2021,36(3):77-86.

    YANG Guohua, WANG Kai, LEI Fanpei, et al. Experimental study on spray characteristics of spiral solid cone nozzle[J]. Journal of Engineering for Thermal Energy and Power,2021,36(3):77-86.

    [5] 郭鹏宇, 王铭民, 吴刘锁, 等. 水喷雾雾化特性实验研究[J]. 消防科学与技术,2020,39(9):1241-1244. doi: 10.3969/j.issn.1009-0029.2020.09.015

    GUO Pengyu, WANG Mingmin, WULIU Suo, et al. Experimental study on the atomization characteristics of fire spray[J]. Fire Science and Technology,2020,39(9):1241-1244. doi: 10.3969/j.issn.1009-0029.2020.09.015

    [6] 贾卫东, 李萍萍, 邱白晶, 等. PDPA在喷嘴雾化特性试验研究中的应用[J]. 中国农村水利水电,2008(9):70-72.

    JIA Weidong, LI Pingping, QIU Baijing, et al. Application of phase Doppler particle analyzer in reek spray nozzle’s characteristic experiment[J]. China Rural Water and Hydropower,2008(9):70-72.

    [7] 伍文锋, 吴建华, 钟柳花, 等. 航空发动机燃油喷嘴雾化角度测量研究[J]. 航空发动机,2017,43(5):69-73.

    WU Wenfeng, WU Jianhua, ZHONG Liuhua, et al. Research on aeroengine fuel nozzle spray angle measurement[J]. Aeroengine,2017,43(5):69-73.

    [8]

    WEI Y J, LI T, ZHOU X Y, et al. Time-resolved measurement of the near-nozzle air entrainment of high-pressure diesel spray by high-speed micro-PTV technique[J]. Fuel,2020,268:117343. doi: 10.1016/j.fuel.2020.117343

    [9]

    CHEN R, NISHIDA K, SHI B L. Quantitative measurement of mixture formation in an impinging spray of ethanol-gasoline blend under cold-start condition via UV-Vis dual-wavelength laser absorption scattering (LAS) technique[J]. Fuel,2020,262:116685. doi: 10.1016/j.fuel.2019.116685

    [10]

    GRÖGER K, KAISER M, WANG J, et al. Comparison of the optical connectivity method to X-ray spray measurements in the near field of a diesel injector[J]. Proceedings of the Combustion Institute,2019,37(3):3271-3278. doi: 10.1016/j.proci.2018.09.017

    [11] 刘章棋, 张远辉. 基于图像处理的船用柴油机喷油嘴喷雾特性研究[J]. 舰船科学技术,2019,41(4):94-96. doi: 10.3404/j.issn.1672-7649.2019.04.018

    LIU Zhangqi, ZHANG Yuanhui. Research on spray characteristics of marine diesel engine nozzle based on image processing[J]. Ship Science and Technology,2019,41(4):94-96. doi: 10.3404/j.issn.1672-7649.2019.04.018

    [12] 魏永杰, 葛婷婷, 张中岐, 等. 基于累积梯度的裂缝提取算法[J]. 应用光学,2019,40(5):818-822. doi: 10.5768/JAO201940.0502005

    WEI Yongjie, GE Tingting, ZHANG Zhongqi, et al. Algorithm of crack extraction based on accumulated gradient[J]. Journal of Applied Optics,2019,40(5):818-822. doi: 10.5768/JAO201940.0502005

    [13] 禹言芳, 李春晓, 孟辉波, 等. 不同形状喷嘴的射流流动与卷吸特性[J]. 过程工程学报,2014,14(4):549-555.

    YU Yanfang, LI Chunxiao, MENG Huibo, et al. Flow and entrainment characteristics of jet from different shape nozzles[J]. The Chinese Journal of Process Engineering,2014,14(4):549-555.

    [14] 王娟, 高助威, 张雪淼, 等. 旋流雾化喷嘴内气液两相流动的特性研究[J]. 石油炼制与化工,2020,51(3):54-61.

    WANG Juan, GAO Zhuwei, ZHANG Xuemiao, et al. Study on characteristics of gas-liquid two-phase flow in swirl atomizing nozzle[J]. Petroleum Processing and Petrochemicals,2020,51(3):54-61.

    [15] 王斌, 邵方琴, 沈秀利, 等. 燃气轮机双燃料喷嘴燃油内流场特性仿真分析[J]. 科学技术与工程,2020,20(27):11125-11130. doi: 10.3969/j.issn.1671-1815.2020.27.022

    WANG Bin, SHAO Fangqin, SHEN Xiuli, et al. Inner flow field characteristics simulation of the dual fuel nozzle of gas turbine[J]. Science Technology and Engineering,2020,20(27):11125-11130. doi: 10.3969/j.issn.1671-1815.2020.27.022

  • 期刊类型引用(6)

    1. 王宇,孙德龙,杨佳沛,梁斌,白清,刘昕,靳宝全. 基于多频相位生成载波的光纤振动传感技术研究. 传感技术学报. 2023(03): 367-372 . 百度学术
    2. 冉艳丽,倪晶利,傅润秋,刘德明. 一种基于光纤激光水听器的PGC改进解调算法. 应用光学. 2020(02): 421-427 . 本站查看
    3. 张燕,曹婷,郭新峰. 干涉型光纤传感器灵敏度和精度仿真优化及性能测试. 激光杂志. 2019(08): 29-33 . 百度学术
    4. 郝其龙,邵士勇,李树旺,梅海平,饶瑞中. 干涉型光纤传感的相位载波调制解调算法. 大气与环境光学学报. 2018(03): 161-169 . 百度学术
    5. 朱俊,王强,翟永军,沈海滨,谷小红. 基于PGC光纤传感器的全数字化解调设计与分析. 传感器与微系统. 2017(07): 116-119 . 百度学术
    6. 孙海艳,陈伟,凤祥云. 智能光纤传感器系统设计与实现. 激光杂志. 2017(03): 24-27 . 百度学术

    其他类型引用(4)

图(7)  /  表(1)
计量
  • 文章访问数:  350
  • HTML全文浏览量:  121
  • PDF下载量:  48
  • 被引次数: 10
出版历程
  • 收稿日期:  2022-01-27
  • 修回日期:  2022-04-14
  • 网络出版日期:  2022-06-01
  • 刊出日期:  2022-09-14

目录

    /

    返回文章
    返回