激光辐照氮化硅陶瓷光谱信息研究

蔡鹏程, 闫佳, 孔鹏, 张卫国, 庞澜, 惠进, 蔡红星

蔡鹏程, 闫佳, 孔鹏, 张卫国, 庞澜, 惠进, 蔡红星. 激光辐照氮化硅陶瓷光谱信息研究[J]. 应用光学, 2022, 43(4): 819-824. DOI: 10.5768/JAO202243.0407005
引用本文: 蔡鹏程, 闫佳, 孔鹏, 张卫国, 庞澜, 惠进, 蔡红星. 激光辐照氮化硅陶瓷光谱信息研究[J]. 应用光学, 2022, 43(4): 819-824. DOI: 10.5768/JAO202243.0407005
CAI Pengcheng, YAN Jia, KONG Peng, ZHANG Weiguo, PANG Lan, XI Jin, CAI Hongxing. Spectral information of silicon nitride ceramics irradiated by laser[J]. Journal of Applied Optics, 2022, 43(4): 819-824. DOI: 10.5768/JAO202243.0407005
Citation: CAI Pengcheng, YAN Jia, KONG Peng, ZHANG Weiguo, PANG Lan, XI Jin, CAI Hongxing. Spectral information of silicon nitride ceramics irradiated by laser[J]. Journal of Applied Optics, 2022, 43(4): 819-824. DOI: 10.5768/JAO202243.0407005

激光辐照氮化硅陶瓷光谱信息研究

基金项目: 国防基础科研项目(JCKY2016208B001)
详细信息
    作者简介:

    蔡鹏程 (1990—),男,博士,工程师,主要从事光学探测及设计方面的研究。 E-mail:cpcaba@126.com

  • 中图分类号: TN249;O433

Spectral information of silicon nitride ceramics irradiated by laser

  • 摘要:

    氮化硅陶瓷具备耐腐蚀、耐磨损和耐高低温冲击的优良性能,常用于高超声速飞行器的热防护材料,激光武器是未来高超声速目标拦截和打击的主要技术手段。采用Nd3+:YAG固体脉冲激光器作为辐照源,热压烧结氮化硅陶瓷为靶材,中阶梯光栅光谱仪为探测器搭建实验系统,采集激光波长1 064 nm,脉宽15 ns,不同能量(50 mJ~500 mJ)作用靶材的辐射光谱。基于美国标准技术与研究院原子光谱数据库对谱线指认,利用玻尔兹曼斜线法计算得到等离子体电子温度范围为6 203 K~6 826 K,斯塔克展宽法计算等离子体电子密度范围为8.40×1015 cm−3~1.14×1016 cm−3,等离子体电子振荡频率为8.23×1011 Hz~9.58×1011 Hz,随着激光能量增加电子温度整体呈上升趋势,电子密度变化存在波动。

    Abstract:

    Silicon nitride ceramics have excellent properties of corrosion resistance, wear resistance and resistance to high-low temperature impact, which are commonly used in thermal protection materials of hypersonic vehicles. The laser weapons are the main technical means for intercepting and striking the hypersonic targets in the future. The Nd3+:YAG solid-state pulsed laser was used as an irradiation source and hot-pressed sintered silicon nitride ceramic was used as the target. Meanwhile, the echelle grating spectrometer was used as the detector to construct an experimental system. The radiation spectra of the target with a laser wavelength of 1 064 nm, pulse width of 15 ns, and different energies (50 mJ~500 mJ) were collected. Line identification was based on the national institute of standards and technology (NIST) atomic spectrum database. According to the Boltzmann method, the plasma electron temperatures range from 6 203 K~6 826 K, the plasma electron density range calculated by the Stark broadening method is 8.40×1015 cm−3~1.14×1016 cm−3, and the electronic oscillation frequency is 8.23×1011~9.58×1011 Hz. With the increase of laser energy, the electron temperature demonstrates an overall upward trend, and the change of electron density fluctuates.

  • 图  1   激光辐照氮化硅陶瓷测试装置示意图

    Figure  1.   Schematic diagram of experimental device for silicon nitride ceramics irradiated by laser

    图  2   激光能量50 mJ~500 mJ辐照氮化硅陶瓷光谱图

    Figure  2.   Spectrogram of irradiated silicon nitride ceramics with laser energy of 50 mJ~500 mJ

    图  3   激光能量500 mJ辐照氮化硅陶瓷光谱图

    Figure  3.   Spectrogram of irradiated silicon nitride ceramics with laser energy of 500 mJ

    图  4   Si I 288.2 nm谱线洛伦兹拟合

    Figure  4.   Lorentz fitting of Si I (288.2 nm) spectral line

    图  5   不同激光能量下等离子体电子温度计算结果

    Figure  5.   Calculation results of plasma electron temperature at different laser energies

    图  6   不同激光能量下等离子体电子密度计算结果

    Figure  6.   Calculation results of plasma electron density at different laser energies

    图  7   不同激光能量下等离子体电子振荡频率计算结果

    Figure  7.   Calculation results of plasma electron oscillation frequencies at different laser energies

    表  1   氮化硅陶瓷物理特性

    Table  1   Physical properties of silicon nitride ceramics

      参数
    密度/g·cm−3 3.2
    烧结温度/℃ 1 700
    硬度/HV 1 500~1 800
    抗折强度/MPa 700
    热膨胀系数(0~1000℃)/℃ 10.5×10−6
    热传导率(25~300℃)/W·m·K−1 18
    下载: 导出CSV

    表  2   激光辐照氮化硅陶瓷光谱参数

    Table  2   Spectral parameters of silicon nitride ceramics irradiated by laser

    原子/离子波长/nm跃迁几率·
    统计权重/s−1
    下能级能量$ {E_i} $/eV上能级能量$ {E_i} $/eV下能级电子组态上能级电子组态
    Si I 288.24 6.51×108 0.780957 5.082345 3s23p2 3s23p4s
    Si III 324.29 7.05×108 21.73892 25.56257 3s4p 3s5s
    Si III 396.23 1.82×107 24.99515 28.12213 3s4d 3p4s
    Si III 437.61 2.07×107 25.39544 28.22687 3s4f 3s5d
    O I 615.54 6.86×107 10.74093 12.75369 2s22p3(4so)3p 2s22p3(4so)4d
    N I 821.72 1.84×108 10.33589 11.84447 2s22p2(3p)3s 2s22p2(3p)3p
    下载: 导出CSV
  • [1]

    BOCANEGRA-BERNAL M H, MATOVIC B. Dense and near-net-shape fabrication of Si3N4 ceramics[J]. Materials Science and Engineering:A,2009,500(1/2):130-149.

    [2] 赵明亮, 陈松, 孙峰, 等. Si3N4陶瓷材料晶界特征分布研究[J]. 物理学报,2021,70(22):254-265.

    ZHAO Mingliang, CHEN Song, SUN Feng, et al. Grain boundary character distributions in Si3N4 ceramics[J]. Acta Physica Sinica,2021,70(22):254-265.

    [3] 崔雪峰, 李建平, 李明星, 等. 氮化物基陶瓷高温透波材料的研究进展[J]. 航空材料学报,2020,40(1):21-34. doi: 10.11868/j.issn.1005-5053.2019.000047

    CUI Xuefeng, LI Jianping, LI Mingxing, et al. Research progress of nitride based ceramic high temperature wave transparent materials[J]. Journal of Aeronautical Materials,2020,40(1):21-34. doi: 10.11868/j.issn.1005-5053.2019.000047

    [4] 张同鑫, 李权. 对抗高超声速武器的机载激光武器发展研究[J]. 航空科学技术,2016,27(3):5-8.

    ZHANG Tongxin, LI Quan. Research on the development of airborne laser weapons against hypersonic weapons[J]. Aeronautical Science & Technology,2016,27(3):5-8.

    [5]

    KAUSHAL H, KADDOUM G. Applications of lasers for tactical military operations[J]. IEEE Access,2017,5:20736-20753. doi: 10.1109/ACCESS.2017.2755678

    [6] 孙铭远, 张昊春, 曲博岩, 等. 激光辐照下卫星筒体部分多物理建模及毁伤效应分析[J]. 应用光学,2021,42(3):542-549. doi: 10.5768/JAO202142.0307003

    SUN Mingyuan, ZHANG Haochun, QU Boyan, et al. Multi-physical modeling and damage effect analysis of satellite cylinders under laser irradiation[J]. Journal of Applied Optics,2021,42(3):542-549. doi: 10.5768/JAO202142.0307003

    [7] 王克强. 抗激光损伤复合陶瓷的研制[D]. 长沙: 中南大学, 2013.

    WANG Keqiang. Preparation of laser damage resistant ceramic composite[D]. Changsha: Central South University, 2013.

    [8]

    PEDARNIG J D, KOLMHOFER P, HUBER N, et al. Element analysis of complex materials by calibration-free laser-induced breakdown spectroscopy[J]. Applied Physics A,2013,112(1):105-111. doi: 10.1007/s00339-012-7208-8

    [9]

    STARKEY R P, LEWIS M J, et al. Plasma telemetry in hypersonic flight[C]//International Telemetering Conference Proceedings. Washington: International Foundation for Telemetering, 2002: 1-10.

    [10]

    GRIEM H R. Plasma spectroscopy[M]. New York: McGraw-Hill, 1964: 2-579.

    [11]

    CHEN Minhao, LI Wei, YANG Chunping. Rapid recognition of laser-induced breakdown spectrum in laser damage[J]. Journal of Physics:Conference Series,2020,1507(7):072026. doi: 10.1088/1742-6596/1507/7/072026

    [12]

    HAFEZ M A, KHEDR M A, ELAKSHER F F, et al. Characteristics of Cu plasma produced by a laser interaction with a solid target[J]. Plasma Sources Science and Technology,2003,12(2):185-198. doi: 10.1088/0963-0252/12/2/310

    [13]

    De GIACOMO A, HERMANN J. Laser-induced plasma emission: from atomic to molecular spectra[J]. Journal of Physics D: Applied Physics, 2017, 50(18): 183002-1-17.

    [14]

    KHAN S, BASHIR S, HAYAT A, et al. Laser-induced breakdown spectroscopy of tantalum plasma[J]. Physics of Plasmas,2013,20(7):073104. doi: 10.1063/1.4812451

    [15]

    YE Ying, TAN Yong, JIN Guangyong. Accurate measurement for damage evolution of ceramics caused by nanosecond laser pulses with polarization spectrum imaging[J]. Optics Express,2019,27(11):16360-16376. doi: 10.1364/OE.27.016360

    [16] 杨福家. 原子物理学[M]. 4版. 北京: 高等教育出版社, 2008: 29-53.

    YANG Jiafu. Autoic physics[M]. 4th edition. Beijing: Higher Education Press, 2008: 29-53.

    [17]

    CAI Pengcheng, LI Shuang, SHI Jing, et al. Inversion of spectral information obtained during hypersonic impact[J]. Applied Optics,2021,60(2):291-295. doi: 10.1364/AO.411269

    [18]

    LIU L, HUANG X, LI S, et al. Laser-induced breakdown spectroscopy enhanced by a micro torch[J]. Optics Express,2015,23(11):15047. doi: 10.1364/OE.23.015047

    [19]

    KONJEVIĆ N, LESAGE A, FUHR J R, et al. Experimental stark widths and shifts for spectral lines of neutral and ionized atoms[J]. Journal of Physical and Chemical Reference Data,2002,31(3):819-927. doi: 10.1063/1.1486456

    [20] 宋黎浩. 等离子鞘套下高超声速飞行器载雷达目标探测研究[D]. 西安: 西安电子科技大学, 2020.

    SONG Lihao. Research on hypersonic vehicle-borne radar target detection under plasma sheath[D]. Xi'an: Xidian University, 2020.

图(7)  /  表(2)
计量
  • 文章访问数:  440
  • HTML全文浏览量:  170
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-27
  • 修回日期:  2022-06-13
  • 网络出版日期:  2022-06-19
  • 刊出日期:  2022-07-14

目录

    /

    返回文章
    返回