Spectral information of silicon nitride ceramics irradiated by laser
-
摘要:
氮化硅陶瓷具备耐腐蚀、耐磨损和耐高低温冲击的优良性能,常用于高超声速飞行器的热防护材料,激光武器是未来高超声速目标拦截和打击的主要技术手段。采用Nd3+:YAG固体脉冲激光器作为辐照源,热压烧结氮化硅陶瓷为靶材,中阶梯光栅光谱仪为探测器搭建实验系统,采集激光波长1 064 nm,脉宽15 ns,不同能量(50 mJ~500 mJ)作用靶材的辐射光谱。基于美国标准技术与研究院原子光谱数据库对谱线指认,利用玻尔兹曼斜线法计算得到等离子体电子温度范围为6 203 K~6 826 K,斯塔克展宽法计算等离子体电子密度范围为8.40×1015 cm−3~1.14×1016 cm−3,等离子体电子振荡频率为8.23×1011 Hz~9.58×1011 Hz,随着激光能量增加电子温度整体呈上升趋势,电子密度变化存在波动。
Abstract:Silicon nitride ceramics have excellent properties of corrosion resistance, wear resistance and resistance to high-low temperature impact, which are commonly used in thermal protection materials of hypersonic vehicles. The laser weapons are the main technical means for intercepting and striking the hypersonic targets in the future. The Nd3+:YAG solid-state pulsed laser was used as an irradiation source and hot-pressed sintered silicon nitride ceramic was used as the target. Meanwhile, the echelle grating spectrometer was used as the detector to construct an experimental system. The radiation spectra of the target with a laser wavelength of 1 064 nm, pulse width of 15 ns, and different energies (50 mJ~500 mJ) were collected. Line identification was based on the national institute of standards and technology (NIST) atomic spectrum database. According to the Boltzmann method, the plasma electron temperatures range from 6 203 K~6 826 K, the plasma electron density range calculated by the Stark broadening method is 8.40×1015 cm−3~1.14×1016 cm−3, and the electronic oscillation frequency is 8.23×1011~9.58×1011 Hz. With the increase of laser energy, the electron temperature demonstrates an overall upward trend, and the change of electron density fluctuates.
-
-
表 1 氮化硅陶瓷物理特性
Table 1 Physical properties of silicon nitride ceramics
参数 值 密度/g·cm−3 3.2 烧结温度/℃ 1 700 硬度/HV 1 500~1 800 抗折强度/MPa 700 热膨胀系数(0~1000℃)/℃ 10.5×10−6 热传导率(25~300℃)/W·m·K−1 18 表 2 激光辐照氮化硅陶瓷光谱参数
Table 2 Spectral parameters of silicon nitride ceramics irradiated by laser
原子/离子 波长/nm 跃迁几率·
统计权重/s−1下能级能量$ {E_i} $/eV 上能级能量$ {E_i} $/eV 下能级电子组态 上能级电子组态 Si I 288.24 6.51×108 0.780957 5.082345 3s23p2 3s23p4s Si III 324.29 7.05×108 21.73892 25.56257 3s4p 3s5s Si III 396.23 1.82×107 24.99515 28.12213 3s4d 3p4s Si III 437.61 2.07×107 25.39544 28.22687 3s4f 3s5d O I 615.54 6.86×107 10.74093 12.75369 2s22p3(4so)3p 2s22p3(4so)4d N I 821.72 1.84×108 10.33589 11.84447 2s22p2(3p)3s 2s22p2(3p)3p -
[1] BOCANEGRA-BERNAL M H, MATOVIC B. Dense and near-net-shape fabrication of Si3N4 ceramics[J]. Materials Science and Engineering:A,2009,500(1/2):130-149.
[2] 赵明亮, 陈松, 孙峰, 等. Si3N4陶瓷材料晶界特征分布研究[J]. 物理学报,2021,70(22):254-265. ZHAO Mingliang, CHEN Song, SUN Feng, et al. Grain boundary character distributions in Si3N4 ceramics[J]. Acta Physica Sinica,2021,70(22):254-265.
[3] 崔雪峰, 李建平, 李明星, 等. 氮化物基陶瓷高温透波材料的研究进展[J]. 航空材料学报,2020,40(1):21-34. doi: 10.11868/j.issn.1005-5053.2019.000047 CUI Xuefeng, LI Jianping, LI Mingxing, et al. Research progress of nitride based ceramic high temperature wave transparent materials[J]. Journal of Aeronautical Materials,2020,40(1):21-34. doi: 10.11868/j.issn.1005-5053.2019.000047
[4] 张同鑫, 李权. 对抗高超声速武器的机载激光武器发展研究[J]. 航空科学技术,2016,27(3):5-8. ZHANG Tongxin, LI Quan. Research on the development of airborne laser weapons against hypersonic weapons[J]. Aeronautical Science & Technology,2016,27(3):5-8.
[5] KAUSHAL H, KADDOUM G. Applications of lasers for tactical military operations[J]. IEEE Access,2017,5:20736-20753. doi: 10.1109/ACCESS.2017.2755678
[6] 孙铭远, 张昊春, 曲博岩, 等. 激光辐照下卫星筒体部分多物理建模及毁伤效应分析[J]. 应用光学,2021,42(3):542-549. doi: 10.5768/JAO202142.0307003 SUN Mingyuan, ZHANG Haochun, QU Boyan, et al. Multi-physical modeling and damage effect analysis of satellite cylinders under laser irradiation[J]. Journal of Applied Optics,2021,42(3):542-549. doi: 10.5768/JAO202142.0307003
[7] 王克强. 抗激光损伤复合陶瓷的研制[D]. 长沙: 中南大学, 2013. WANG Keqiang. Preparation of laser damage resistant ceramic composite[D]. Changsha: Central South University, 2013.
[8] PEDARNIG J D, KOLMHOFER P, HUBER N, et al. Element analysis of complex materials by calibration-free laser-induced breakdown spectroscopy[J]. Applied Physics A,2013,112(1):105-111. doi: 10.1007/s00339-012-7208-8
[9] STARKEY R P, LEWIS M J, et al. Plasma telemetry in hypersonic flight[C]//International Telemetering Conference Proceedings. Washington: International Foundation for Telemetering, 2002: 1-10.
[10] GRIEM H R. Plasma spectroscopy[M]. New York: McGraw-Hill, 1964: 2-579.
[11] CHEN Minhao, LI Wei, YANG Chunping. Rapid recognition of laser-induced breakdown spectrum in laser damage[J]. Journal of Physics:Conference Series,2020,1507(7):072026. doi: 10.1088/1742-6596/1507/7/072026
[12] HAFEZ M A, KHEDR M A, ELAKSHER F F, et al. Characteristics of Cu plasma produced by a laser interaction with a solid target[J]. Plasma Sources Science and Technology,2003,12(2):185-198. doi: 10.1088/0963-0252/12/2/310
[13] De GIACOMO A, HERMANN J. Laser-induced plasma emission: from atomic to molecular spectra[J]. Journal of Physics D: Applied Physics, 2017, 50(18): 183002-1-17.
[14] KHAN S, BASHIR S, HAYAT A, et al. Laser-induced breakdown spectroscopy of tantalum plasma[J]. Physics of Plasmas,2013,20(7):073104. doi: 10.1063/1.4812451
[15] YE Ying, TAN Yong, JIN Guangyong. Accurate measurement for damage evolution of ceramics caused by nanosecond laser pulses with polarization spectrum imaging[J]. Optics Express,2019,27(11):16360-16376. doi: 10.1364/OE.27.016360
[16] 杨福家. 原子物理学[M]. 4版. 北京: 高等教育出版社, 2008: 29-53. YANG Jiafu. Autoic physics[M]. 4th edition. Beijing: Higher Education Press, 2008: 29-53.
[17] CAI Pengcheng, LI Shuang, SHI Jing, et al. Inversion of spectral information obtained during hypersonic impact[J]. Applied Optics,2021,60(2):291-295. doi: 10.1364/AO.411269
[18] LIU L, HUANG X, LI S, et al. Laser-induced breakdown spectroscopy enhanced by a micro torch[J]. Optics Express,2015,23(11):15047. doi: 10.1364/OE.23.015047
[19] KONJEVIĆ N, LESAGE A, FUHR J R, et al. Experimental stark widths and shifts for spectral lines of neutral and ionized atoms[J]. Journal of Physical and Chemical Reference Data,2002,31(3):819-927. doi: 10.1063/1.1486456
[20] 宋黎浩. 等离子鞘套下高超声速飞行器载雷达目标探测研究[D]. 西安: 西安电子科技大学, 2020. SONG Lihao. Research on hypersonic vehicle-borne radar target detection under plasma sheath[D]. Xi'an: Xidian University, 2020.