Spectral beam combination technology of high-power laser
-
摘要:
为了获得高功率激光束,提出利用双色镜对典型波长2种不同类型(脉冲、连续)的高能激光进行合束,以实现高功率高能量激光输出。通过对双色镜的热效应和合束光斑远场激光参数进行仿真分析计算,热效应仿真结果表明,在单束激光10 kW、光斑直径15 mm条件下,双色镜面型热形变量均方根值为0.004λ(λ=632.8 nm),满足光学元件面型小于0.03λ精度要求。搭建了一套基于双色镜的光谱合束系统,并分别进行了高功率连续激光与高功率连续激光、高功率连续激光与高能量脉冲激光的合束试验,合束效率高于95%。试验结果表明,光谱合束可有效应用于高能激光领域。
Abstract:In order to obtain the high-power laser beam, the dichroic mirror was used to combine the two different types of pulse and continuous high energy laser beam of typical wavelengths to achieve the high-power and high-energy laser output. Through the simulation analysis of the thermal effect of dichroic mirrors and the far-field laser parameters of beam combination spot, the simulation results of the thermal effect showed that the root-mean-square value of surface thermal deformation of dichroic mirror was 0.004 λ (λ=632.8 nm) with the single laser beam power of 10 kW and the light spot diameter of 15 mm, which satisfied the design requirements of optical elements surface accuracy less than 0.03 λ. Finally, an experimental system based on dichroic mirror of spectral beam combination was developed. The beam combination test of high-power continuous laser and high-power continuous laser, high-power continuous laser and high-energy pulsed laser were carried out respectively, and the beam combination efficiency was higher than 95%. The experimental results show that the spectral beam combination can be effectively applied to the field of high-energy laser.
-
-
表 1 二氧化硅的热力学参数
Table 1 Thermodynamic parameters of SiO2
材料特性 参数 密度/ kg·m−3 2 200 吸收系数/ m−1 141 热导率/ W·m−1·K−1 1.4 比热容/ J·kg−1·K−1 752 热膨胀系数/ K−1 5.8×10−7 杨氏模量/ GPa 73.1 泊松比 0.17 熔点/ K 1 750 拉应力/ MPa 500 压应力/ MPa 3 000 表 2 双色镜热分析形变量仿真结果
Table 2 Simulation results of thermal analysis and deformations of dichroic mirror
单束激光功率/ W 最高温度/(°) 最低温度/(°) 元件形变量RMS/m 500 20.898 20.308 1.5×10−10 10 000 38.734 26.867 2.9×10−9 表 3 合束激光远场光斑参数仿真计算结果
Table 3 Simulation results of laser spot parameters of beam combination laser in far field
距离L/m 300 500 1 000 3 000 $ {d_c} $/mm $ \delta $=0 54.7 91.7 183.4 550.0 $ \delta $=10 μrad 55.3 92.1 186.0 557.2 $ {\theta _c} $/mrad $ \delta $=0 0.183 0.183 0.183 0.183 $ \delta $=10 μrad 0.184 0.184 0.184 0.184 表 4 连续1 070 nm、1 090 nm激光合束效率试验测试结果
Table 4 Test results of beam combination efficiency between 1 070 nm and 1 090 nm continuous laser
序号 1 070 nm激
光功率/W1 090 nm激
光功率/W合束后
功率/W合束效率/% 1 499.8 501.1 954.8 95.4 2 499.8 501.1 952.6 95.2 3 499.8 501.1 956.1 95.6 表 5 脉冲1 064 nm、连续1 090 nm激光合束效率试验测试结果
Table 5 Test results of beam combination efficiency between 1 064 nm pulse laser and 1 090 nm continuous laser
序号 合束前 合束后 合束效率/% 1 064 nm
脉冲能
量/mJ1 090 nm
连续功
率/W1 064 nm
脉冲能
量/mJ1 090 nm
连续功
率/W1 064 nm
脉冲1 090 nm
连续1 400.2 500.6 389.6 474.6 97.3 94.8 2 400.2 500.6 387.4 476.8 96.8 95.2 3 400.2 500.6 390.1 475.2 97.5 94.9 -
[1] 李怡勇, 王建华, 李智. 高能激光武器发展态势[J]. 兵器装备工程学报,2017,38(6):1-6. doi: 10.11809/scbgxb2017.06.001 LI Yiyong, WANG Jianhua, LI Zhi. Development situation of high-energy laser weapons[J]. Journal of Ordnance Equipment Engineering,2017,38(6):1-6. doi: 10.11809/scbgxb2017.06.001
[2] 李建华, 赵全习, 许伟, 等. 激光反无人机作战需求分析[J]. 飞航导弹,2010(12):13-17. LI Jianhua, ZHAO Quanxi, XU Wei, et al. Operations requirements analysis of laser anti-UAV[J]. Aerodynamic Missile Journal,2010(12):13-17.
[3] 张岩岫, 王冰, 雷萍, 等. 高能激光对抗系统的发展现状与趋势[J]. 光电技术应用,2018,33(6):24-28. doi: 10.3969/j.issn.1673-1255.2018.06.005 ZHANG Yanxiu, WANG Bing, LEI Ping, et al. Development situation and trend of high energy laser countermeasure system[J]. Electro-Optic Technology Application,2018,33(6):24-28. doi: 10.3969/j.issn.1673-1255.2018.06.005
[4] 徐明兴, 林冰轩, 陈志刚, 等. 中小型无人机防御激光武器的技术途径分析[J]. 现代防御技术,2020,48(5):10-15. doi: 10.3969/j.issn.1009-086x.2020.05.002 XU Mingxing, LIN Bingxuan, CHEN Zhigang, et al. Analysis on the technical approaches of medium/small unmanned aerial vehicle against laser weapon[J]. Modern Defence Technology,2020,48(5):10-15. doi: 10.3969/j.issn.1009-086x.2020.05.002
[5] 张大勇, 郝金坪, 朱辰, 等. 光纤激光器光谱合束技术综述[J]. 激光与红外,2016,46(5):517-521. doi: 10.3969/j.issn.1001-5078.2016.05.001 ZHANG Dayong, HAO Jinping, ZHU Chen, et al. Review on spectral beam combining of fiber lasers[J]. Laser & Infrared,2016,46(5):517-521. doi: 10.3969/j.issn.1001-5078.2016.05.001
[6] 张强, 汪岳峰, 雷呈强, 等. 双光路合成系统光束耦合精度研究[J]. 红外与激光工程,2010,39(6):1055-1059. doi: 10.3969/j.issn.1007-2276.2010.06.015 ZHANG Qiang, WANG Yuefeng, LEI Chengqiang, et al. Research on beam coupling precision of double beams combination system[J]. Infrared and Laser Engineering,2010,39(6):1055-1059. doi: 10.3969/j.issn.1007-2276.2010.06.015
[7] 孙方圆. 高光束质量激光外腔合束技术研究[D]. 北京: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2018. SUN Fangyuan. Investigation of high beam quality laser by external cavity combination technology[D]. Beijing: Institute of Physics, Chinese Academy of Sciences, 2018.
[8] 陈子伦, 周旋风, 王泽锋, 等. 高功率光纤激光器功率合束器的研究进展[J]. 红外与激光工程,2018,47(1):65-71. CHEN Zilun, ZHOU Xuanfeng, WANG Zefeng, et al. Review of all-fiber signal combiner for high power fiber lasers[J]. Infrared and Laser Engineering,2018,47(1):65-71.
[9] 张俊明, 吴肖杰, 马晓辉, 等. 基于光谱合束技术的透射光栅模拟设计[J]. 应用光学,2017,38(3):514-520. ZHANG Junming, WU Xiaojie, MA Xiaohui, et al. Simulation design of transmission grating based on spectral beam combining technique[J]. Journal of Applied Optics,2017,38(3):514-520.
[10] 王敏, 王青, 朱日宏, 等. 光谱合束二向色镜反射率及合束效率仿真研究[J]. 激光技术,2019,43(3):421-426. doi: 10.7510/jgjs.issn.1001-3806.2019.03.025 WANG Min, WANG Qing, ZHU Rihong, et al. Simulation of reflectivity and combining efficiency of dichroic mirrors for spectral beam combining[J]. Laser Technology,2019,43(3):421-426. doi: 10.7510/jgjs.issn.1001-3806.2019.03.025
[11] 孙毅, 高云国, 邵帅. 高功率激光热效应对合束系统的影响[J]. 光学 精密工程,2015,23(11):3097-3106. doi: 10.3788/OPE.20152311.3097 SUN Yi, GAO Yunguo, SHAO Shuai. Influence of high power laser thermal effect on beam combination system[J]. Optics and Precision Engineering,2015,23(11):3097-3106. doi: 10.3788/OPE.20152311.3097
[12] 周次明, 程祖海. 强激光反射镜热畸变对光束传输特性的影响[J]. 强激光与粒子束,2003,15(10):969-972. ZHOU Ciming, CHENG Zuhai. Influence of thermal deformations of high power laser mirroron beam transfer characteristic[J]. High Power Laser & Particle Beams,2003,15(10):969-972.
[13] 张建云, 陈帆, 马骏, 等. 熔融石英基片热形变及其对光束质量的影响分析[J]. 激光技术,2019,43(3):374-379. doi: 10.7510/jgjs.issn.1001-3806.2019.03.016 ZHANG Jianyun, CHEN Fan, MA Jun, et al. Thermal deformation of fused silica substrates and its influence on beam quality[J]. Laser Technology,2019,43(3):374-379. doi: 10.7510/jgjs.issn.1001-3806.2019.03.016
[14] 李松柏, 陈建国, 窦汝海. 一维激光阵列相干合束远场特性的研究[J]. 应用光学,2010,31(1):136-141. doi: 10.3969/j.issn.1002-2082.2010.01.031 LI Songbai, CHEN Jianguo, DOU Ruhai. Characteristics on coherent combined beam of onedimensional laser diode array in far field[J]. Journal of Applied Optics,2010,31(1):136-141. doi: 10.3969/j.issn.1002-2082.2010.01.031
[15] 冯国斌, 杨鹏翎, 王群书, 等. 强激光远场光斑强度分布测量技术[J]. 强激光与粒子束,2013,25(7):1615-1619. doi: 10.3788/HPLPB20132507.1615 FENG Guobin, YANG Pengling, WANG Qunshu, et al. Measuring technology for far-field beam profile of high power laser[J]. High Power Laser and Particle Beams,2013,25(7):1615-1619. doi: 10.3788/HPLPB20132507.1615
[16] 李永亮, 姜会林. 高功率脉冲激光的远场能量密度分布测试方法研究[J]. 光子学报,2009,38(5):1274-1276. LI Yongliang, JIANG Huilin. Detection methods of far-field energy density of the high power pulse laser[J]. Acta Photonica Sinica,2009,38(5):1274-1276.
[17] 陈超, 黎高平, 张彪, 等. 高能激光远场辐照度分布测量技术及其进展[J]. 应用光学,2020,41(4):675-680. doi: 10.5768/JAO202041.0409004 CHEN Chao, LI Gaoping, ZHANG Biao, et al. High energy laser far-field irradiance distribution measurement technology and its developments[J]. Journal of Applied Optics,2020,41(4):675-680. doi: 10.5768/JAO202041.0409004
-
期刊类型引用(2)
1. 庞华廷,刘立东,黄莉添. 车载激光雷达下新能源汽车无人驾驶障碍检测. 激光杂志. 2024(06): 114-119 . 百度学术
2. 李会茹. 基于双目视觉的奖状训练器CJ1飞行操纵数据识别技术研究. 机电技术. 2024(05): 45-49 . 百度学术
其他类型引用(0)