衍射光学元件精密模压模具设计及预补偿

张云龙, 焦眀印, 汪志斌, 张峰, 张征

张云龙, 焦眀印, 汪志斌, 张峰, 张征. 衍射光学元件精密模压模具设计及预补偿[J]. 应用光学, 2022, 43(4): 760-765. DOI: 10.5768/JAO202243.0405002
引用本文: 张云龙, 焦眀印, 汪志斌, 张峰, 张征. 衍射光学元件精密模压模具设计及预补偿[J]. 应用光学, 2022, 43(4): 760-765. DOI: 10.5768/JAO202243.0405002
ZHANG Yunlong, JIAO Mingyin, WANG Zhibin, ZHANG Feng, ZHANG Zheng. Mold design and pre-compensation of precision molding for diffractive optical elements[J]. Journal of Applied Optics, 2022, 43(4): 760-765. DOI: 10.5768/JAO202243.0405002
Citation: ZHANG Yunlong, JIAO Mingyin, WANG Zhibin, ZHANG Feng, ZHANG Zheng. Mold design and pre-compensation of precision molding for diffractive optical elements[J]. Journal of Applied Optics, 2022, 43(4): 760-765. DOI: 10.5768/JAO202243.0405002

衍射光学元件精密模压模具设计及预补偿

基金项目: 国防基础科研计划资助(JCKY2018208C022)
详细信息
    作者简介:

    张云龙(1978—),男,博士,研究员,主要从事光学精密加工方面的研究。E-mail:zyl_office@aliyun.com

    通讯作者:

    汪志斌(1986—),男,博士,高级工程师,主要从事光学精密加工工艺方面的研究。E-mail:wang10310@126.com

  • 中图分类号: TN205

Mold design and pre-compensation of precision molding for diffractive optical elements

  • 摘要:

    衍射光学元件较球面、非球面光学元件在校正色差方面具备较大优势,尤其是在红外光学领域,应用衍射光学元件可进一步增加光学系统的设计自由度。随着红外光学市场的进一步增大,常规的衍射光学金刚石车削技术难以满足大规模需求,精密模压技术成为解决上述问题的关键技术。模具设计是实现精密模压的重点,为了缩减模具设计周期,该文采用有限元仿真方法对模具进行预先设计及补偿,并试加工。采用单站式精密模压机对设计的模具进行了精密模压试验。模压试验结果表明:采用合理的工艺参数,能够实现衍射光学元件面形精度PV达到0.56 μm,位置误差<0.011 mm,环带高度误差<0.12 μm,验证了仿真预先补偿在衍射光学模具设计中的有效性。

    Abstract:

    The diffractive optical elements (DOE) have great advantages in correcting chromatic aberration compared with spherical and aspheric optical selements, especially in the field of infrared optics, the application of DOE can further increase the design freedom of optical systems. With the further expansion of infrared optics market, the conventional single point diamond turning technology of diffraction optics is difficult to meet the large-scale demands, so the precision molding technology has become the key technology to solve the above problems. The mold design is one of the key points of precision molding. In order to reduce the mold design cycle, the pre-design and pre-correction of mold were carried out by using the finite element simulation method, and then the mold was processed. The single-station precision molding machine was adapted for precision molding test of designed molds. The test results show that, with the reasonable process parameters, the PV value of the surface shape accuracy of DOE can reach 0.56 μm, the position error is less than 0.011 mm, and the height error of the band is less than 0.12 μm, which verifies the effectiveness of the simulation pre-compensation in the design of diffractive optical molds.

  • 图  1   光学设计的衍射面形示意图

    Figure  1.   Schematic of diffractive profile from optical design

    图  2   模压工艺参数示意图

    Figure  2.   Schematic diagram of molding process parameters

    图  3   衍射光学元件取整部分图形

    Figure  3.   Diagram of integer part for DOE

    图  4   模具仿真设计及补偿原理

    Figure  4.   Simulation design of mold and its compensation principle

    图  5   衍射面模具面形

    Figure  5.   Surface shape of diffractive profile mold

    图  6   模压后的衍射样件及其衍射环带填充情况

    Figure  6.   Molded diffractive sample and filling state of its diffractive band

    图  7   模压后零件面形以及与理论面形的对比

    Figure  7.   Comparison of molded surface shape of elements and theoretical surface shape

    表  1   模压工艺参数及其相应的含义

    Table  1   Molding process parameters and meanings

    序号参数含义
    1T1模压温度
    2T2模压结束温度
    3T3缓冷结束温度
    4T4保压结束时温度
    5T5最终冷却温度
    6ST1均温时间
    7Vcooling缓冷速率
    8P1模压压力
    9P2保压压力1
    10P3保压压力2
    11PT1P1阶段持续时间
    12PT2P2阶段持续时间
    13PT3P3阶段持续时间
    下载: 导出CSV

    表  2   衍射面设计参数

    Table  2   Design parameters of diffractive profile

    参数参数
    CC0n12.7781
    k0n21
    A−2.300081e-5λ00.01
    B 2.428109e-7 C1 −7.64024e-4
    C 4.104299e-10 C2 6.36616e-7
    D−2.101422e-12HOR1
    下载: 导出CSV

    表  3   仿真补偿后衍射面参数

    Table  3   Parameters of diffractive profile after simulation and compensation

    参数参数
    CC1.53e-10n12.7781
    k1.97e-18n21
    A4.4335e-4λ00.01
    B −1.3974e-5 C1 −7.64024e-4
    C 1.5318e-7 C2 6.36616e-7
    D−5.6902e-10
    下载: 导出CSV

    表  4   优选的衍射零件模压过程参数值

    Table  4   Parameter values of molding process for optimized diffractive optical elements

    参数参数
    T1/℃235P1/kN0.2
    T2/℃235P2/kN0.1
    T3/℃180P3/kN0.1
    T4/℃100PT1/s80
    T5/℃50PT2/s100
    ST1/s1 000PT3/s80
    Vcooling/℃/s0.1
    下载: 导出CSV
  • [1]

    ZHANG Yunlong, WANG Zhibin, ZHANG Feng, et al. Processing and error compensation of diffractive optical element[C]//7th International symposium on advanced optical manufacturing and testing technologies. USA: SPIE, 2006, 9280: 92800G.

    [2] 张峰, 汪志斌, 张云龙, 等. 衍射光学元件车削补偿技术的研究[J]. 应用光学,2014,35(6):1058-1062.

    ZHANG Feng, WANG Zhibin, ZHANG Yunlong, et al. Diamond turning compensation techniques of diffractive optical elements[J]. Journal of Applied Optics,2014,35(6):1058-1062.

    [3] 林常规, 郭小勇, 王先锋, 等. As2Se3硫系玻璃非球面镜片的精密模压成型[J]. 红外与激光工程,2019,8(7):0742002-1-7.

    LIN Changgui, GUO Xiaoyong, WANG Xianfeng, et al. Precision molding of As2Se3 chalcogenide glass aspheric lens[J]. Infrared and Laser Engineering,2019,8(7):0742002-1-7.

    [4] 汪志斌, 李军琪, 张 峰, 等. 硫系红外玻璃精密模压模具有限元仿真设计[J]. 光电工程, 2016, 43(5): 53-58.

    WANG Zhibin, LI Junqi, ZHANG Feng, et al. The design of mold with simulation for chalcogenide glass precision molding[J]. Opto-Electronic Engineering, 2016, 43(5): 53-58.

    [5]

    ZHANG Y, LIANG R, SPIRES O J, et al. Precision glass molding of diffractive optical elements with high surface quality[J]. Opt. Lett.,2020,45(23):6438-6441. doi: 10.1364/OL.406195

    [6]

    YI A Y, CHEN Y, KLOCKE F. , et al. A high volume precision compression molding process of glass diffractive optics by use of a micromachined fused silica wafer mold and low Tg optical glass[J]. Journal of Micromechanics and Microengineering,2006,16(10):2000-2005. doi: 10.1088/0960-1317/16/10/012

    [7]

    ZHOU T, ZHU Z, LIU X, et al. A review of the precision glass molding of chalcogenide glass (ChG) for infrared optics[J]. Micromachines, 2018, 9(7): 337.

    [8]

    KLOCKE F, DAMBON O, LIU G, et al. Analysis of wear of fused silica moulding using glassy carbon moulds[J]. Production Engineering,2016,10(4):367-374.

    [9]

    ZHANG Y, ZHOU W, SPIRES O, et al. Precision glass molding for diffractive optics[C]. USA: OSA Technical Digest, 2020.

    [10]

    PRATER K, DUKWEN J, SCHARF T, et al. Micro-structuring of glassy carbon for precision glass molding of binary diffractive optical elements[J]. Optical Materials Express,2016,6(11):3407-3416. doi: 10.1364/OME.6.003407

    [11]

    LIU Y, XING Y, FU H, et al. Deformation analysis of the glass preform in the progress of precision glass molding for fabricating chalcogenide glass diffractive optics with the finite element method[J]. Micromachines,2021,12(12):1543. doi: 10.3390/mi12121543

    [12]

    HAMBLEN D P. Diffractive optics: the gradial zone lens[J]. Optics Letters,1994,19(21):1687-1689. doi: 10.1364/OL.19.001687

    [13]

    ZHANG Yunlong, WANG Zhibin, ZHANG Feng, et al. Research on molding of chalcogenide glass diffractive optical element [C]. USA: SPIE, 2022.

    [14]

    MADAPUSI S, KIM N H, TOMHE Y. Predictive molding of precision glass optics[J]. SAE International Journal of Materials and Manufacturing,2009,2(1):494-501. doi: 10.4271/2009-01-1199

    [15]

    ZHANG L, LIU W. Precision glass molding: Toward an optimal fabrication of optical lenses[J]. Front. Mech. Eng.,2017(12):3-17.

  • 期刊类型引用(6)

    1. 刘博涵,赖敏,肖韶荣. 光纤输出远场光斑均匀性检测方法的研究. 应用光学. 2019(02): 356-362 . 本站查看
    2. 刘忆惠,陈建国,甘振华,杜民,高跃明. HPV基因芯片检测装置的匀光照明设计. 光学仪器. 2019(03): 75-80 . 百度学术
    3. 梁孙根,胡淼,张春洋,胡晓粉,毕洲洋,李齐良,卢旸,毕美华,杨国伟,周雪芳. 基于近焦点非球面透镜的LED均匀照明设计. 强激光与粒子束. 2019(09): 11-16 . 百度学术
    4. 叶开,杨玲,甄小琼,郝勤正. 基于积分球光源的能见度测量系统设计及实现. 激光与光电子学进展. 2019(24): 64-72 . 百度学术
    5. 吴超华,李云飞,严建峰. 基于NB-IoT的路灯控制系统设计. 现代电子技术. 2018(24): 5-9 . 百度学术
    6. 张博. 电子通信领域改进背光模组的研究. 现代电子技术. 2017(04): 9-11+15 . 百度学术

    其他类型引用(7)

图(7)  /  表(4)
计量
  • 文章访问数:  591
  • HTML全文浏览量:  246
  • PDF下载量:  70
  • 被引次数: 13
出版历程
  • 收稿日期:  2021-12-23
  • 修回日期:  2022-02-27
  • 网络出版日期:  2022-05-13
  • 刊出日期:  2022-07-14

目录

    /

    返回文章
    返回