Mold design and pre-compensation of precision molding for diffractive optical elements
-
摘要:
衍射光学元件较球面、非球面光学元件在校正色差方面具备较大优势,尤其是在红外光学领域,应用衍射光学元件可进一步增加光学系统的设计自由度。随着红外光学市场的进一步增大,常规的衍射光学金刚石车削技术难以满足大规模需求,精密模压技术成为解决上述问题的关键技术。模具设计是实现精密模压的重点,为了缩减模具设计周期,该文采用有限元仿真方法对模具进行预先设计及补偿,并试加工。采用单站式精密模压机对设计的模具进行了精密模压试验。模压试验结果表明:采用合理的工艺参数,能够实现衍射光学元件面形精度PV达到0.56 μm,位置误差<0.011 mm,环带高度误差<0.12 μm,验证了仿真预先补偿在衍射光学模具设计中的有效性。
Abstract:The diffractive optical elements (DOE) have great advantages in correcting chromatic aberration compared with spherical and aspheric optical selements, especially in the field of infrared optics, the application of DOE can further increase the design freedom of optical systems. With the further expansion of infrared optics market, the conventional single point diamond turning technology of diffraction optics is difficult to meet the large-scale demands, so the precision molding technology has become the key technology to solve the above problems. The mold design is one of the key points of precision molding. In order to reduce the mold design cycle, the pre-design and pre-correction of mold were carried out by using the finite element simulation method, and then the mold was processed. The single-station precision molding machine was adapted for precision molding test of designed molds. The test results show that, with the reasonable process parameters, the PV value of the surface shape accuracy of DOE can reach 0.56 μm, the position error is less than 0.011 mm, and the height error of the band is less than 0.12 μm, which verifies the effectiveness of the simulation pre-compensation in the design of diffractive optical molds.
-
Keywords:
- diffractive optical elements /
- precision molding /
- mold design /
- chalcogenide glass
-
-
表 1 模压工艺参数及其相应的含义
Table 1 Molding process parameters and meanings
序号 参数 含义 1 T1 模压温度 2 T2 模压结束温度 3 T3 缓冷结束温度 4 T4 保压结束时温度 5 T5 最终冷却温度 6 ST1 均温时间 7 Vcooling 缓冷速率 8 P1 模压压力 9 P2 保压压力1 10 P3 保压压力2 11 PT1 P1阶段持续时间 12 PT2 P2阶段持续时间 13 PT3 P3阶段持续时间 表 2 衍射面设计参数
Table 2 Design parameters of diffractive profile
参数 值 参数 值 CC 0 n1 2.7781 k 0 n2 1 A −2.300081e-5 λ0 0.01 B 2.428109e-7 C1 −7.64024e-4 C 4.104299e-10 C2 6.36616e-7 D −2.101422e-12 HOR 1 表 3 仿真补偿后衍射面参数
Table 3 Parameters of diffractive profile after simulation and compensation
参数 值 参数 值 CC 1.53e-10 n1 2.7781 k 1.97e-18 n2 1 A 4.4335e-4 λ0 0.01 B −1.3974e-5 C1 −7.64024e-4 C 1.5318e-7 C2 6.36616e-7 D −5.6902e-10 表 4 优选的衍射零件模压过程参数值
Table 4 Parameter values of molding process for optimized diffractive optical elements
参数 值 参数 值 T1/℃ 235 P1/kN 0.2 T2/℃ 235 P2/kN 0.1 T3/℃ 180 P3/kN 0.1 T4/℃ 100 PT1/s 80 T5/℃ 50 PT2/s 100 ST1/s 1 000 PT3/s 80 Vcooling/℃/s 0.1 -
[1] ZHANG Yunlong, WANG Zhibin, ZHANG Feng, et al. Processing and error compensation of diffractive optical element[C]//7th International symposium on advanced optical manufacturing and testing technologies. USA: SPIE, 2006, 9280: 92800G.
[2] 张峰, 汪志斌, 张云龙, 等. 衍射光学元件车削补偿技术的研究[J]. 应用光学,2014,35(6):1058-1062. ZHANG Feng, WANG Zhibin, ZHANG Yunlong, et al. Diamond turning compensation techniques of diffractive optical elements[J]. Journal of Applied Optics,2014,35(6):1058-1062.
[3] 林常规, 郭小勇, 王先锋, 等. As2Se3硫系玻璃非球面镜片的精密模压成型[J]. 红外与激光工程,2019,8(7):0742002-1-7. LIN Changgui, GUO Xiaoyong, WANG Xianfeng, et al. Precision molding of As2Se3 chalcogenide glass aspheric lens[J]. Infrared and Laser Engineering,2019,8(7):0742002-1-7.
[4] 汪志斌, 李军琪, 张 峰, 等. 硫系红外玻璃精密模压模具有限元仿真设计[J]. 光电工程, 2016, 43(5): 53-58. WANG Zhibin, LI Junqi, ZHANG Feng, et al. The design of mold with simulation for chalcogenide glass precision molding[J]. Opto-Electronic Engineering, 2016, 43(5): 53-58.
[5] ZHANG Y, LIANG R, SPIRES O J, et al. Precision glass molding of diffractive optical elements with high surface quality[J]. Opt. Lett.,2020,45(23):6438-6441. doi: 10.1364/OL.406195
[6] YI A Y, CHEN Y, KLOCKE F. , et al. A high volume precision compression molding process of glass diffractive optics by use of a micromachined fused silica wafer mold and low Tg optical glass[J]. Journal of Micromechanics and Microengineering,2006,16(10):2000-2005. doi: 10.1088/0960-1317/16/10/012
[7] ZHOU T, ZHU Z, LIU X, et al. A review of the precision glass molding of chalcogenide glass (ChG) for infrared optics[J]. Micromachines, 2018, 9(7): 337.
[8] KLOCKE F, DAMBON O, LIU G, et al. Analysis of wear of fused silica moulding using glassy carbon moulds[J]. Production Engineering,2016,10(4):367-374.
[9] ZHANG Y, ZHOU W, SPIRES O, et al. Precision glass molding for diffractive optics[C]. USA: OSA Technical Digest, 2020.
[10] PRATER K, DUKWEN J, SCHARF T, et al. Micro-structuring of glassy carbon for precision glass molding of binary diffractive optical elements[J]. Optical Materials Express,2016,6(11):3407-3416. doi: 10.1364/OME.6.003407
[11] LIU Y, XING Y, FU H, et al. Deformation analysis of the glass preform in the progress of precision glass molding for fabricating chalcogenide glass diffractive optics with the finite element method[J]. Micromachines,2021,12(12):1543. doi: 10.3390/mi12121543
[12] HAMBLEN D P. Diffractive optics: the gradial zone lens[J]. Optics Letters,1994,19(21):1687-1689. doi: 10.1364/OL.19.001687
[13] ZHANG Yunlong, WANG Zhibin, ZHANG Feng, et al. Research on molding of chalcogenide glass diffractive optical element [C]. USA: SPIE, 2022.
[14] MADAPUSI S, KIM N H, TOMHE Y. Predictive molding of precision glass optics[J]. SAE International Journal of Materials and Manufacturing,2009,2(1):494-501. doi: 10.4271/2009-01-1199
[15] ZHANG L, LIU W. Precision glass molding: Toward an optimal fabrication of optical lenses[J]. Front. Mech. Eng.,2017(12):3-17.
-
期刊类型引用(6)
1. 刘博涵,赖敏,肖韶荣. 光纤输出远场光斑均匀性检测方法的研究. 应用光学. 2019(02): 356-362 . 本站查看
2. 刘忆惠,陈建国,甘振华,杜民,高跃明. HPV基因芯片检测装置的匀光照明设计. 光学仪器. 2019(03): 75-80 . 百度学术
3. 梁孙根,胡淼,张春洋,胡晓粉,毕洲洋,李齐良,卢旸,毕美华,杨国伟,周雪芳. 基于近焦点非球面透镜的LED均匀照明设计. 强激光与粒子束. 2019(09): 11-16 . 百度学术
4. 叶开,杨玲,甄小琼,郝勤正. 基于积分球光源的能见度测量系统设计及实现. 激光与光电子学进展. 2019(24): 64-72 . 百度学术
5. 吴超华,李云飞,严建峰. 基于NB-IoT的路灯控制系统设计. 现代电子技术. 2018(24): 5-9 . 百度学术
6. 张博. 电子通信领域改进背光模组的研究. 现代电子技术. 2017(04): 9-11+15 . 百度学术
其他类型引用(7)