基于游标效应的双芯光子晶体光纤温度传感器

安国文, 王立志, 贾平岗, 翟成瑞, 张彦军, 苏建慧, 朱枫彤, 刘磊

安国文, 王立志, 贾平岗, 翟成瑞, 张彦军, 苏建慧, 朱枫彤, 刘磊. 基于游标效应的双芯光子晶体光纤温度传感器[J]. 应用光学, 2022, 43(3): 551-556. DOI: 10.5768/JAO202243.0308002
引用本文: 安国文, 王立志, 贾平岗, 翟成瑞, 张彦军, 苏建慧, 朱枫彤, 刘磊. 基于游标效应的双芯光子晶体光纤温度传感器[J]. 应用光学, 2022, 43(3): 551-556. DOI: 10.5768/JAO202243.0308002
AN Guowen, WANG Lizhi, JIA Pinggang, ZHAI Chengrui, ZHANG Yanjun, SU Jianhui, ZHU Fengtong, LIU Lei. Dual-core photonic crystal fiber temperature sensor based on vernier effect[J]. Journal of Applied Optics, 2022, 43(3): 551-556. DOI: 10.5768/JAO202243.0308002
Citation: AN Guowen, WANG Lizhi, JIA Pinggang, ZHAI Chengrui, ZHANG Yanjun, SU Jianhui, ZHU Fengtong, LIU Lei. Dual-core photonic crystal fiber temperature sensor based on vernier effect[J]. Journal of Applied Optics, 2022, 43(3): 551-556. DOI: 10.5768/JAO202243.0308002

基于游标效应的双芯光子晶体光纤温度传感器

基金项目: 国家自然科学基金(62075199,51935011,51821003);山西省“1331工程”重点学科建设基金 ;山西省青年科学基金资助项目(201901D211231,201901D211245);山西省高校科技创新项目(2019L0502)
详细信息
    作者简介:

    安国文(1988—),男,博士,讲师,主要从事光子晶体光纤及光纤传感方面的研究。E-mail:anguowen@nuc.edu.cn

    通讯作者:

    张彦军(1975—),男,博士,副教授,主要从事光电传感技术、测试计量技术及仪器方面的研究。E-mail:zhangyanjun@nuc.edu.cn

  • 中图分类号: TP212

Dual-core photonic crystal fiber temperature sensor based on vernier effect

  • 摘要: 设计了一种基于双芯光纤耦合效应和游标效应的高灵敏度温度传感器,传感器是由2个相差一定长度的双芯光子晶体光纤和单模光纤级联构成。双芯光子晶体光纤通过级联实现游标效应,同时对纤芯中间的气孔填充乙醇实现温度传感。仿真结果表明,该温度传感器在35 ℃~45 ℃范围内的平均温度灵敏度可达−20.37 nm/℃。与单纯依靠双芯光子晶体光纤能量耦合效应的传感器相比,该传感器的温度检测灵敏度提高了10倍。
    Abstract: A high-sensitivity temperature sensor based on dual-core fiber coupling effect and vernier effect was proposed. The sensor was composed of two fibers which with a certain length difference, they were dual-core photonic crystal fiber and single mode fiber. The vernier effect was achieved by dual-core photonic crystal fiber through the cascade, and in the meantime the temperature sensing was achieved by filling the pores with ethanol in the middle of the fiber core. The simulation results show that the average temperature sensitivity of -20.37 nm/℃ of the temperature sensor can be achieved in the temperature range of 35℃~45℃. Compared with the sensor which only depends on the energy coupling effect of dual-core photonic crystal fiber, the temperature detection sensitivity of the proposed sensor is 10 times higher.
  • 图  1   双芯PCF横截面图

    Figure  1.   Cross-section diagram of dual-core PCF

    图  2   传感器示意图

    Figure  2.   Schematic diagram of sensor

    图  3   模式场分布图

    Figure  3.   Mode field distributions diagram

    图  4   参考双芯PCF的透射谱、传感双芯PCF的透射谱、级联双芯PCF的透射谱和包络线

    Figure  4.   Transmission spectrum of reference dual-core PCF, transmission spectrum of sensing dual-core PCF, as well as transmission spectrum and envelope curve of cascaded dual-core PCF

    图  5   级联双芯PCF中光波的纵向功率分布

    Figure  5.   Longitudinal power distribution of light in designed cascaded dual-core PCF

    图  6   35 ℃~45 ℃范围单个传感双芯PCF和级联双芯PCF的透射谱及级联双芯PCF透射谱的包络

    Figure  6.   Transmission spectra of single sensing dual-core PCF, cascaded dual-core PCF and envelope curves of cascaded dual-core PCF transmission spectra in range of 35°C~45 °C

    图  7   单个双芯PCF和级联双芯PCF的温度敏感度的线性拟合曲线

    Figure  7.   Linear fitting curves of temperature sensitivity of single dual-core PCF and cascaded dual-core PCF

    表  1   本文提出的传感器的传感性能与最近报道的方案的比较

    Table  1   Comparison of sensing performance of proposed sensor with recently reported schemes

    年份传感器配置灵敏度/(nm/°C)参考文献
    2015 级联 SIs −13.36 [16]
    2019 单个双芯PCF −11.64 [11]
    2019 级联 FPIs 0.278 [17]
    2020 平行 FPIs 0.092 [13]
    2021 混合型MI + FPI 0.7109 [15]
    2021 级联双芯PCF −20.37 本文
    下载: 导出CSV
  • [1]

    ABRAMSKY S, JAGADEESAN R, MALACARIA P. Full abstraction for PCF[J]. Information and Computation,2000,163(2):409-470. doi: 10.1006/inco.2000.2930

    [2]

    KUROKAWA K, TAJIMA K, TSUJIKAWA K, et al. Penalty-free dispersion-managed soliton transmission over a 100 km low-loss PCF[J]. Journal of Lightwave Technology, 2006, 24(1): 32-37.

    [3]

    ZHANG Yani. Design and optimization of high-birefringence low-loss crystal fiber with two zero-dispersion wavelengths for nonlinear effects[J]. Applied Optics,2011,50(25):E125. doi: 10.1364/AO.50.00E125

    [4]

    MARTINS H, MARQUES M B, JORGE P, et al. Intensity curvature sensor based on photonic crystal fiber with three coupled cores[J]. Optics Communications,2012,285(24):5128-5131. doi: 10.1016/j.optcom.2012.07.074

    [5]

    QIU Shi, YUAN Jinhui, ZHOU Xian, et al. Highly sensitive temperature sensing based on all-solid cladding dual-core photonic crystal fiber filled with the toluene and ethanol[J]. Optics Communications,2020,477:126357. doi: 10.1016/j.optcom.2020.126357

    [6]

    OU Zhilong, YU Yongqin, YAN Peiguang, et al. Ambient refractive index-independent bending vector sensor based on seven-core photonic crystal fiber using lateral offset splicing[J]. Optics Express,2013,21(20):23812-23821. doi: 10.1364/OE.21.023812

    [7]

    ZHOU Xue, LI Shuguang, LI Xuegang, et al. A vectorial analysis of the curvature sensor based on a dual-core photonic crystal fiber[J]. IEEE Transactions on Instrumentation and Measurement,2020,69(9):6564-6570. doi: 10.1109/TIM.2020.2968777

    [8]

    SAITOH K, SATO Y, KOSHIBA M. Coupling characteristics of dual-core photonic crystal fiber couplers[J]. Optics Express,2003,11(24):3188-3195. doi: 10.1364/OE.11.003188

    [9]

    HOU Maoxiang, WANG Ying, LIU Shuhui, et al. Multi-components interferometer based on partially filled dual-core photonic crystal fiber for temperature and strain sensing[J]. IEEE Sensors Journal,2016,16(16):6192-6196. doi: 10.1109/JSEN.2016.2581302

    [10]

    KUMAR PAUL A, KRISHNO SARKAR A, RAHMAN A B S, et al. Twin core photonic crystal fiber plasmonic refractive index sensor[J]. IEEE Sensors Journal,2018,18(14):5761-5769. doi: 10.1109/JSEN.2018.2841035

    [11]

    ZHANG Shaoxian, YIN Liu, ZHAO Yujia, et al. Bending sensor with parallel fiber Michelson interferometers based on Vernier-like effect[J]. Optics & Laser Technology,2019,120:105679.

    [12]

    LIU Qiang, XING Liang, YAN Sicheng, et al. Sensing characteristics of photonic crystal fiber Sagnac interferometer based on novel birefringence and Vernier effect[J]. Metrologia,2020,57(3):035002. doi: 10.1088/1681-7575/ab71b2

    [13]

    NAN Tong, LIU Bo, WU Yongfeng, et al. High-temperature fiber sensor based on two paralleled fiber-optic Fabry-Perot interferometers with ultrahigh sensitivity[J]. Optical Engineering,2020,59:027102.

    [14]

    HOU Leyi, ZHAO Chunliu, XU Ben, et al. Highly sensitive PDMS-filled Fabry-Perot interferometer temperature sensor based on the Vernier effect[J]. Applied Optics,2019,58(18):4858-4865. doi: 10.1364/AO.58.004858

    [15]

    ABBAS L G, LI Hao. Temperature sensing by hybrid interferometer based on Vernier like effect[J]. Optical Fiber Technology,2021,64:102538. doi: 10.1016/j.yofte.2021.102538

    [16]

    SHAO Liyang, LUO Yuan, ZHANG Zhiyong, et al. Sensitivity-enhanced temperature sensor with cascaded fiber optic Sagnac interferometers based on Vernier-effect[J]. Optics Communications,2015,336:73-76. doi: 10.1016/j.optcom.2014.09.075

    [17]

    DENG Jun, WANG D N. Ultra-sensitive strain sensor based on femtosecond laser inscribed in-fiber reflection mirrors and vernier effect[J]. Journal of Lightwave Technology,2019,37(19):4935-4939. doi: 10.1109/JLT.2019.2926066

    [18]

    ZHAO Yuanfang, DAI Maolin, CHEN Zhenmin, et al. Ultrasensitive temperature sensor with Vernier-effect improved fiber Michelson interferometer[J]. Optics Express,2021,29(2):1090-1101. doi: 10.1364/OE.415857

    [19]

    MALITSON I H. Interspecimen comparison of the refractive index of fused silica*[J]. Journal of the Optical Society of America,1965,55(10):1205-1209. doi: 10.1364/JOSA.55.001205

    [20]

    WU Tiesheng, LIU Yumin, YU Zhongyuan, et al. The sensing characteristics of plasmonic waveguide with a ring resonator[J]. Optics Express,2014,22(7):7669-7677. doi: 10.1364/OE.22.007669

    [21]

    SANI E, DELL'ORO A. Spectral optical constants of ethanol and isopropanol from ultraviolet to far infrared[J]. Optical Materials,2016,60:137-141. doi: 10.1016/j.optmat.2016.06.041

    [22]

    WANG Z, TARU T, BIRKS T A, et al. Coupling in dual-core photonic bandgap fibers: theory and experiment[J]. Optics Express,2007,15(8):4795-4803. doi: 10.1364/OE.15.004795

    [23]

    NAGANUMA F, KROEGER D, BANDARU S S, et al. Lateral hypothalamic neurotensin neurons promote arousal and hyperthermia[J]. PLoS Biology,2019,17(3):e3000172. doi: 10.1371/journal.pbio.3000172

    [24]

    KONG G, ANYARAMBHATLA G, PETROS W P, et al. Efficacy of liposomes and hyperthermia in a human tumor xenograft model: importance of triggered drug release[J]. Cancer Research,2000,60(24):6950-6957.

    [25]

    GARANINA A S, NAUMENKO V A, NIKITIN A A, et al. Temperature-controlled magnetic nanoparticles hyperthermia inhibits primary tumor growth and metastases dissemination[J]. Nanomedicine:Nanotechnology, Biology and Medicine,2020,25:102171. doi: 10.1016/j.nano.2020.102171

  • 期刊类型引用(1)

    1. 倪晋平,崔艳,田会,谢辰浩. 减小光幕靶边缘效应的灵敏度补偿方法. 西安航空学院学报. 2024(05): 52-57 . 百度学术

    其他类型引用(0)

图(9)  /  表(1)
计量
  • 文章访问数:  514
  • HTML全文浏览量:  234
  • PDF下载量:  86
  • 被引次数: 1
出版历程
  • 收稿日期:  2021-10-25
  • 修回日期:  2022-01-16
  • 网络出版日期:  2022-04-05
  • 刊出日期:  2022-05-11

目录

    /

    返回文章
    返回