级联积分球辐射源角度均匀性研究

Angular uniformity of cascaded integrating sphere radiation source

  • 摘要: 为了设计和制造高角度均匀性的积分球辐射源,需要提供优化的设计参数。基于空腔的辐射传输理论,建立了基于级联积分球结构的发光单元光出射度分布的仿真模型,并获得了朗伯型发光单元安装位置和级联积分球辐射源角度均匀性之间的关系。仿真结果表明:理想情况下,采用2个朗伯型级联子球作为发光单元,对称安装在与级联积分球辐射源出光口法线方向成10°夹角位置时,通过球心与出光口法线方向成±20°夹角观测区域内的角度均匀性可以达到0.03%的水平。最后,通过实验测量级联子球在30°夹角位置时级联积分球辐射源的角度均匀性,发现实验结果与仿真结果接近一致。因此,通过优化发光单元的类型和安装位置,可以有效提升积分球辐射源的角度均匀性。

     

    Abstract: In order to design and manufacture integrating sphere radiation sources with high angular uniformity, it is necessary to provide optimized design parameters. Based on the radiative transfer theory of cavity, a simulation model of light exitance distribution of light-emitting unit based on cascaded integrating sphere structure was established, and the relationship between the installation position of the Lambertian light-emitting unit and the angular uniformity of the cascaded integrating sphere radiation source was obtained. The simulation results showed that, in ideal conditions, when two Lambertian cascaded sub-spheres were used as light-emitting units and were symmetrically installed at an angle of 10° with the normal direction of the light outlet of the cascaded integrating sphere radiation source, the angular uniformity in the observation area at an angle of ±20° between the center of the sphere and the normal direction of the light outlet could reach the level of 0.03%. Finally, the angular uniformity of the cascaded integrating sphere radiation source at the 30° angle position of the cascaded sub-spheres was measured experimentally, and the experimental results were close to the simulation results. Therefore, by optimizing the type and installation position of the light-emitting unit, the angular uniformity of the integrating sphere radiation source could be effectively improved.

     

/

返回文章
返回