基于深度学习的气溶胶荧光光谱识别应用研究

Application of aerosol fluorescence spectrum recognition based on deep learning

  • 摘要: 空气中的高危病原微生物对人类社会存在着极大威胁,而传统的监测方法无法对空气中的微生物实现准确的识别与分类。因此采用激光诱导荧光技术原理,以单光子探测器为核心器件,设计并搭建了一种高效的荧光光谱仪用于空气中高危病原微生物的识别与分类,并且该光谱仪可以实现对微生物浓度的预测,其对于环境安全具有重要意义。对于该光谱仪采集的数据,探索了以一维向量和二维矩阵2种输入形式来实现荧光光谱的识别与分类,并研究对比了主成分分析网络、卷积神经网络和全卷积网络等深度学习网络的识别与分类效果。实验结果表明以矩阵形式输入的卷积神经网络模型在测试集中识别分类准确率达到98.05%。采用矩阵形式输入的全卷积网络模型在测试集中微生物浓度预测准确率达到98.97%。

     

    Abstract: The high-risk pathogenic microorganisms in the air pose a great threat to human society, but the traditional monitoring methods cannot accurately identify and classify the microorganisms in the air. Therefore, based on the principle of laser-induced fluorescence technology and single photon detector as the core device, an efficient fluorescence spectrometer was designed and built for the identification and classification of high-risk pathogenic microorganisms in the air, and the spectrometer could predict the concentration of microorganisms, which was of great significance to environmental safety. For the data collected by the spectrometer, the two input forms of one-dimensional vector and two-dimensional matrix were used to realize the identification and classification of fluorescence spectra, and the identification and classification effects of deep learning networks such as principal component analysis network, convolutional neural network and full convolutional network were studied and compared. The experimental results show that the identification and classification accuracy of convolutional neural network model with matrix input reaches 98.05% in the test set, and the prediction accuracy of microorganisms concentration of full convolutional network model with matrix input reaches 98.97% in the test set.

     

/

返回文章
返回