Design and application of optical system based on terahertz spectroscopy technology
-
摘要:
太赫兹脉冲信号在频域上具有“指纹频谱”特性,利用该性质可以对物质进行定性分析。借助Zemax软件的光学分析与优化功能,设计了二次非球面TPX平凸透镜,提高了透镜对太赫兹波束的聚集能力;采用平凸透镜设计了太赫兹波束整形光学系统,并将该光学系统用于太赫兹时域光谱系统中,对盐酸莫西沙星和左氧氟沙星进行太赫兹光谱测试,经过算法处理后得到二者在频域上的吸收系数与折射率曲线。测试结果表明:左氧氟沙星的折射率在0.1 THz~3.5 THz波段要比盐酸莫西沙星高,但是盐酸莫西沙星的折射率变化更加平缓;盐酸莫西沙星在1.03 THz、1.92 THz、2.58 THz、2.84 THz处具有明显的吸收峰,左氧氟沙星在1.35 THz、1.96 THz、2.52 THz、2.73 THz处具有明显的吸收峰。
Abstract:The terahertz pulse signal has the characteristics of "fingerprint spectrum" in the frequency domain, which can be used for qualitative analysis of substances. A secondary aspheric TPX plano-convex lens was designed to improve the ability of lens to focus on the terahertz beams, with the help of optical analysis and optimization functions of Zemax software. The terahertz beam shaping optical system was designed by using the plano-convex lens, and the optical system was used in a terahertz time-domain spectroscopy system. The terahertz spectroscopy tests were performed on moxifloxacin hydrochloride and levofloxacin, and the absorption coefficient and refractive index curve in frequency domain were obtained after algorithm processing. The test results show that the refractive index of levofloxacin is higher than that of moxifloxacin hydrochloride in the range of 0.1 THz~3.5 THz band, but the change of the refractive index of moxifloxacin hydrochloride is more gentle than that of levofloxacin. The moxifloxacin hydrochloride has obvious absorption peaks at 1.03 THz, 1.92 THz, 2.58 THz and 2.84 THz, and the levofloxacin has obvious absorption peaks at 1.35 THz, 1.96 THz, 2.52 THz, 2.73 THz.
-
Keywords:
- terahertz /
- optical system /
- fingerprint spectrum /
- substance identification
-
-
表 1 平凸透镜优化参数表
Table 1 Optimization parameters of plano-convex lens
参数 优化前 优化后 r/mm 17.55 17.55 d/mm 9.5 9.5 c/mm 28 27.315 k 0 −0.574 l/mm 50 52.641 -
[1] TONOUCI M. Cutting-edge terahertz technology[J]. Nature Photonics,2007(1):97-105.
[2] 韩丽娜, 教媛媛, 宁威. 太赫兹成像和光谱在医疗领域的应用综述[J]. 重庆邮电大学学报(自然科学版),2021,33(2):242-252. HAN Lina, JIAO Yuanyuan, NING Wei. Application of terahertz imaging and spectroscopy in medical field[J]. Journal of Chongqing University of Posts and Telecommunications( Natural Science Edition),2021,33(2):242-252.
[3] AFSAH-HEJRI L, HAJEB P, ARA P, et al. A comprehensive review on food applications of terahertz spectroscopy and imaging[J]. Comprehensive Reviews in Food Science and Food Safety,2019,18(5):1563-1621. doi: 10.1111/1541-4337.12490
[4] PENG Y, SHI C J, ZHU Y M, et al. Terahertz spectroscopy in biomedical field: a review on signal-to-noise ratio improvement[J]. Photonix,2020,1(1):1-18. doi: 10.1186/s43074-020-00006-w
[5] 任泽伟, 詹洪磊, 陈思同, 等. 用太赫兹时域光谱法检测沙粒中的微量原油[J]. 应用光学,2020,41(2):361-365. doi: 10.5768/JAO202041.0203004 REN Zewei, ZHAN Honglei, CHEN Sitong, et al. Detection of trace crude oil in surface sands by THz time-domain spectroscopy[J]. Journal of Applied Optics,2020,41(2):361-365. doi: 10.5768/JAO202041.0203004
[6] 白军朋, 李斌, 张淑娟, 等. 基于太赫兹时域光谱技术的诺氟沙星浓度检测研究[J]. 光谱学与光谱分析,2021,41(9):2710-2716. BAI Junpeng, LI Bin, ZHANG Shujuan, et al. Study on norfloxacin concentration detection based on terahertz time domain spectroscopy[J]. Spectroscopy and Spectral Analysis,2021,41(9):2710-2716.
[7] GAVDUSH A A, CHERNOMYRDIN N V, MALAKHOV K M, et al. Terahertz spectroscopy of gelatin-embedded human brain gliomas of different grades: a road toward intraoperative THz diagnosis[J]. Journal of Biomedical Optics,2019,24(2):027001.
[8] YEO W G, GUREL O, HITCHCOCK C L, et al. Evaluation of cancer tissue morphology via THz spectroscopic imaging: human lung and small intestine malignancies[J]. Infrared Physics & Technology,2019,97:411-416.
[9] 肖健, 高爱华. 光电导天线产生太赫兹波的研究[J]. 应用光学,2010,31(3):395-399. doi: 10.3969/j.issn.1002-2082.2010.03.011 XIAO Jian, GAO Aihua. Terahertz generation with photoconductive antenna[J]. Journal of Applied Optics,2010,31(3):395-399. doi: 10.3969/j.issn.1002-2082.2010.03.011
[10] NEU J, STONE E A, SPIES J A, et al. Terahertz spectroscopy of tetrameric peptides[J]. The Journal of Physical Chemistry Letters,2019,10(10):2624-2628. doi: 10.1021/acs.jpclett.9b01091
[11] YE D D, WANG W Z, ZHOU H T, et al. Characterization of thermal barrier coatings microstructural features using terahertz spectroscopy[J]. Surface and Coatings Technology,2020,394:125836. doi: 10.1016/j.surfcoat.2020.125836
[12] STEPANOV A G, HEBLING J, KUHL J. THz generation via optical rectification with ultrashort laser pulse focused to a line[J]. Applied Physics B,2005,81(1):23-26. doi: 10.1007/s00340-005-1826-1
[13] WATANABE Y, KAWASE K, IKARI T, et al. Component analysis of chemical mixtures using terahertz spectroscopic imaging[J]. Optics Communications,2004,234(1-6):125-129. doi: 10.1016/j.optcom.2004.02.032
[14] HAN P, WANG X K, ZHANG Y. Time-resolved terahertz spectroscopy studies on 2D van der waals materials[J]. Advanced Optical Materials,2020,8(3):1900533. doi: 10.1002/adom.201900533
[15] 孟坤. 太赫兹时域光谱技术研究及应用[D]. 绵阳: 中国工程物理研究院, 2011. MENG Kun. Research and application of terahertz time domain spectroscopy technology[D]. Mianyang: China Academy of Engineering Physics, 2011.
[16] 谢雨杉, 黄异, 钟宇杰, 等. 基于高斯混合模型的液体电磁参数太赫兹测量方法[J]. 应用光学,2021,42(6):982-988. doi: 10.5768/JAO202142.0601006 XIE Yushan, HUANG Yi, ZHONG Yujie, et al. Terahertz measurement method of liquid electromagnetic parameters based on Gaussian mixture model[J]. Journal of Applied Optics,2021,42(6):982-988. doi: 10.5768/JAO202142.0601006
-
期刊类型引用(3)
1. 陈炳旭,杨旭,张智强,栾晓宇,蒋锐. 宽波段折反射式航空相机设计. 红外技术. 2024(08): 864-871 . 百度学术
2. 刘旭,尹晶,刘玉桥,王强,胡雪莹. 直线运动动态目标发生器光学系统设计. 光学技术. 2022(06): 664-667+678 . 百度学术
3. 姜东旭,孙宝玉,李迎春,林洁琼,王冬雪,王文攀. 机载相机非球面光学系统热光学特性分析. 应用光学. 2020(02): 270-275 . 本站查看
其他类型引用(6)