Abstract:
The photon integrated interferometric imaging system is an emerging imaging technology with small size, light weight and low power consumption, and its resolution is not limited by the aperture size of a single lens. For the image restoration problem of photon integrated interferometric imaging system, the studies on the image restoration technology and optimal arrangement of microlens array were conducted. The image restoration technology of photon integrated interferometric imaging based on the compressed sensing and the optimal arrangement design method of microlens array based on the image residuals were proposed. Through the computer simulation, the optimal design of the microlens array in the limited space volume could be realized, and the quality of the image restoration was improved significantly. The simulation results show that the system root-mean-squared error (RMSE) was reduced by nearly 90% through the image reconstruction method based on the compressed sensing algorithm, and the peak signal to noise ratio (PSNR) as well as the quality of the image restoration was improved significantly. Based on the proposed algorithm, the influence of the microlens arrangement of the certain aperture on the imaging quality is quantitatively analyzed.