Temperature sensing characteristics based on coreless- few mode-coreless optical fiber structure
-
摘要:
提出了一种基于无芯-少模-无芯光纤结构的温度传感器,对传感器进行了理论分析和实验研究。该传感器将无芯光纤(coreless fiber, CLF)与少模光纤(few-mode fiber, FMF)同轴熔接,构建无芯-少模-无芯的光纤结构,结构两端熔接单模(single mode fiber, SMF)光纤作为输入输出光纤,第1段无芯光纤与单模光纤的模式失配起到激发高阶模的作用,少模光纤中的LP01与LP11两种模式沿少模光纤纤芯传输,在第2段无芯光纤的作用下LP01与LP11两种模式重新耦合回单模光纤,LP01与LP11两种模式发生干涉,形成干涉光谱。当外界温度变化时,两种模式的光程差发生变化,干涉光谱的干涉波谷发生漂移,选取2个不同的干涉波谷作为特征波长,进行实验分析。实验结果表明:波长在1 550 nm和1 534 nm附近的干涉谷均发生红移,相应的温度灵敏度分别为68 pm/℃和44.5 pm/℃。该传感结构制作简单、灵敏度高,有很好的应用前景。
Abstract:A temperature sensor based on coreless-few mode-coreless optical fiber structure was proposed for theoretical analysis and experimental study. The coreless fiber (CLF) and the few-mode fiber (FMF) were fused together to form a coreless-few mode-coreless optical fiber structure, and the single-mode fiber (SMF) was fused at both ends of the structure as input and output fiber. The mode mismatch between the first section of coreless fiber and single-mode fiber could excite higher-order modes. The two modes of LP01 and LP11 in the few-mode fiber were transmitted along the core of the few-mode fiber. Under the action of the second section coreless fiber, the two modes were recoupled back to the single-mode fiber, and the two modes interfered to form an interference spectrum. When the outside temperature changed, the optical path difference between the two modes also changed, and the interference troughs of the interference spectrum were shifted. Two different interference troughs were selected as the characteristic wavelengths for experimental analysis. The experimental results show that the interference troughs with wavelength around 1 550 nm and 1 534 nm both have red shift, and the corresponding temperature sensitivity is 68 pm/ and 44.5 pm/ respectively. The sensing structure has the advantages of simple fabrication, high sensitivity and good application prospects.
-
Keywords:
- optical fiber optics /
- coreless fiber /
- few-mode fiber /
- temperature measurement
-
-
[1] 韩军, 高波, 张芳, 等. 变间隙法布里-珀罗干涉仪光程差线性分析[J]. 应用光学,2021,42(3):494-498. doi: 10.5768/JAO202142.0302007 HAN Jun, GAO Bo, ZHANG Fang, et al. Linear analysis of optical path difference of variable-gap Fabry-Perot interferometer[J]. Journal of Applied Optics,2021,42(3):494-498. doi: 10.5768/JAO202142.0302007
[2] LIU Tianqi, WANG Jing, LIAO Yipeng, et al. Splicing point tapered fiber Mach-Zehnder interferometer for simultaneous measurement of temperature and salinity in seawater[J]. Optics Express,2019,27(17):23905. doi: 10.1364/OE.27.023905
[3] TIAN Z B, YAM S S H. In-line single-mode optical fiber interferometric refractive index sensors[J]. Journal of Lightwave Technology,2009,27(13):2296-2306. doi: 10.1109/JLT.2008.2007507
[4] HUANG Ran, NI Kai, WU Xueying, et al. Refractometer based on Mach-Zehnder interferometer with peanut-shape structure[J]. Optics Communications,2015,353:27-29. doi: 10.1016/j.optcom.2015.04.070
[5] WU D, ZHU T, CHIANG K S, et al. All single-mode fiber Mach–Zehnder interferometer based on two peanut-shape structures[J]. Journal of Lightwave Technology,2012,30(5):805-810. doi: 10.1109/JLT.2011.2182498
[6] LIN Ziting, LYU R Q, ZHAO Yong, et al. High-sensitivity salinity measurement sensor based on no-core fiber[J]. Sensors and Actuators A:Physical,2020,305:111947. doi: 10.1016/j.sna.2020.111947
[7] DAI Bin, SHEN Xiang, HU Xiongwei, et al. Temperature-insensitive refractive index sensor with etched microstructure fiber[J]. Sensors,2019,19(17):3749. doi: 10.3390/s19173749
[8] WANG Huihao, MENG Hongyun, XIONG Rui, et al. Simultaneous measurement of refractive index and temperature based on asymmetric structures modal interference[J]. Optics Communications,2016,364:191-194. doi: 10.1016/j.optcom.2015.11.015
[9] LI L, XIA L, XIE Z, et al. All-fiber Mach-Zehnder interferometers for sensing applications[J]. Optics Express,2012,20(10):11109-11120. doi: 10.1364/OE.20.011109
[10] DONG Xinran, DU Haifeng, LUO Zhi, et al. Highly sensitive strain sensor based on a novel Mach-Zehnder interferometer with TCF-PCF structure[J]. Sensors,2018,18(1):278. doi: 10.3390/s18010278
[11] WAN Hongdan, ZHANG Jiahe, CHEN Qian, et al. An active fiber sensor based on modal interference in few-mode fibers for dual-parameter detection[J]. Optics Communications,2021,481:126498. doi: 10.1016/j.optcom.2020.126498
[12] WANG Biao, ZHANG Weigang, BAI Zhiyong, et al. Mach–Zehnder interferometer based on interference of selective high-order core modes[J]. IEEE Photonics Technology Letters,2016,28(1):71-74. doi: 10.1109/LPT.2015.2483518
[13] 张珊, 黄战华, 李桂芳, 等. 温度不敏感的少模光纤应变传感[J]. 中国激光,2017,44(2):319-325. ZHANG Shan, HUANG Zhanhua, LI Guifang, et al. Temperature-insensitive strain sensing based on few mode fiber[J]. Chinese Journal of Lasers,2017,44(2):319-325.
[14] TONG Zhengrong, WANG Xue, WANG Yan, et al. Dual-parameter optical fiber sensor based on few-mode fiber and spherical structure[J]. Optics Communications,2017,405:60-65. doi: 10.1016/j.optcom.2017.07.070
[15] YU Xiujuan, BU Dan, CHEN Xuefeng, et al. Lateral stress sensor based on an in-fiber Mach–Zehnder interferometer and Fourier analysis[J]. IEEE Photonics Journal,2016,8(2):1-10.
-
期刊类型引用(7)
1. 王凯,李得睿,向升,程斌. 基于光斑投影3D-DIC的动态液面波高场测量方法研究. 力学学报. 2023(10): 2427-2438 . 百度学术
2. 杜连续,金永. 小波变换轮廓术测量精度影响因素的研究. 机械与电子. 2022(03): 13-16 . 百度学术
3. 张申华,杨延西. 非静态物体的光栅图像投影3D测量方法. 电子测量与仪器学报. 2022(08): 158-166 . 百度学术
4. 夏桂书,吴虹星,魏永超,武兴焜. 旋转状态下的航空发动机叶片形变测量. 中国测试. 2022(12): 40-44 . 百度学术
5. 李雪,陶曾杰,雷琳. 傅里叶变换轮廓术在通信原理课程的教学应用. 实验室研究与探索. 2022(11): 140-144 . 百度学术
6. 夏桂书,武兴焜,魏永超,吴虹星. FTP动态测量航空发动机叶片三维型面. 中国测试. 2021(03): 30-35 . 百度学术
7. 朱荣刚,周健杰,张敏涛,陈鹏. 基于傅里叶变换迭代的条纹延拓方法研究. 金陵科技学院学报. 2021(03): 22-27 . 百度学术
其他类型引用(15)