一种双曲面光学系统中次镜装调设计与实现

Design and realization of secondary-mirror adjustment in hyper-boloid optical system

  • 摘要: R-C(Ritchey-Chretien)光学系统作为两镜反射式光学系统,是双曲面光学系统的典型结构形式,在现代光学工程中具有重要的应用。以缩短高精度系统装调周期和指导高精度系统批量生产为目的,用某一机载星敏感器所应用的R-C光学系统为例,在确定以主镜为装调基准的前提下,针对直径较小的次镜,设计了一种次镜装调机构,实现次镜6个自由度调整,并对装调、固化过程中涉及的方法进行了说明。通过对装调前后以及环境试验后的系统像质进行测试,验证了设计机构的稳定性。测试结果表明:该次镜装调机构能够满足系统像质要求,整机波像差PV值优于(1/2)λ,RMS值优于(1/15)λ,装调方法达到可指导高精度系统批量生产的目的。

     

    Abstract: The Ritchey-Chretien (R-C) optical system, as a two-mirror reflective optical system, is the typical structural form of hyperboloid optical system and has important applications in modern optical engineering. To shorten the adjustment cycle and guide the mass production of high-precision system, taking the R-C optical system applied in a certain airborne star sensor as an example, a secondary-mirror adjustment mechanism was designed for the secondary-mirror with small diameter under the premise of taking the primary mirror as the adjustment reference, which realized the adjustment of six degrees of freedom of secondary-mirror, and explained the method involved in the adjustment and curing process. The stability of the design mechanism was verified by testing the system image quality before and after adjustment and environmental test. The test results show that the secondary-mirror adjustment mechanism can meet the requirements of system image quality, the whole-machine wavefront aberration PV value is better than (1/2)λ, the RMS is better than (1/15)λ, and the adjustment method attains the goal of guiding the mass production of high-precision system.

     

/

返回文章
返回