单光子探测三维点云与可见光图像融合处理算法研究

张飞飞, 彭雷, 袁韬

张飞飞, 彭雷, 袁韬. 单光子探测三维点云与可见光图像融合处理算法研究[J]. 应用光学, 2021, 42(6): 1034-1039. DOI: 10.5768/JAO202142.0602004
引用本文: 张飞飞, 彭雷, 袁韬. 单光子探测三维点云与可见光图像融合处理算法研究[J]. 应用光学, 2021, 42(6): 1034-1039. DOI: 10.5768/JAO202142.0602004
ZHANG Feifei, PENG Lei, YUAN Tao. Fusion processing algorithm of single-photon detection for three-dimensional point cloud and visible light image[J]. Journal of Applied Optics, 2021, 42(6): 1034-1039. DOI: 10.5768/JAO202142.0602004
Citation: ZHANG Feifei, PENG Lei, YUAN Tao. Fusion processing algorithm of single-photon detection for three-dimensional point cloud and visible light image[J]. Journal of Applied Optics, 2021, 42(6): 1034-1039. DOI: 10.5768/JAO202142.0602004

单光子探测三维点云与可见光图像融合处理算法研究

基金项目: 装备预先研究项目(30102220201)
详细信息
    作者简介:

    张飞飞(1988—),男,硕士,工程师,主要从事机载航电系统研究。E-mail:772338187@qq.com

  • 中图分类号: TN248

Fusion processing algorithm of single-photon detection for three-dimensional point cloud and visible light image

  • 摘要: 为了提升光电系统对于目标的探测识别能力,实现单光子探测三维点云数据和二维可见光图像的融合处理,提出了单光子探测成像系统的融合处理算法,采用直接线性变换方法并利用同名特征点的选取和间接平差算法解决了融合处理过程中的参数标定问题。通过实验数据进行融合处理算法验证,实现了分辨率1024×768像素单光子探测三维点云和二维可见光图像的像素级融合处理。实验结果表明,提出的融合处理算法能够有效实现三维、二维图像的融合。
    Abstract: In order to improve the detection and identification ability of the photoelectric system for the target, and achieve the fusion processing of single-photon detection of 3D point cloud data and 2D visible light images, the fusion processing algorithm of single-photon detection imaging system was proposed. A direct linear transformation method was used, and the parameter calibration problems in the process of fusion processing were solved by selection of homonymic feature points and indirect adjustment algorithm. The fusion processing algorithm was verified by the experimental data, and the pixel-level fusion processing with 1 024×768 resolution single-photon detection of 3D point cloud data and 2D visible light images was achieved. The experimental results show that the proposed fusion processing algorithm can effectively achieve the fusion of 3D and 2D images.
  • 图  1   单光子探测三维点云数据与可见光相机图像融合处理流程

    Figure  1.   Fusion processing of single-photon detection for 3D point cloud data and visible camera image

    图  2   融合处理算法的基本原理

    Figure  2.   Principle of fusion processing algorithm

    图  3   融合处理软件总体方案

    Figure  3.   Overall scheme of fusion processing software

    图  4   单光子探测成像系统组成结构

    Figure  4.   Structure of single-photon detection imaging system

    图  5   原始三维点云与可见光二维图像

    Figure  5.   Original 3D point cloud and visible light 2D image

    图  6   融合处理后叠加灰度信息的三维数据

    Figure  6.   Three dimensional data with gray information after fusion processing

    表  1   选取的同名特征点坐标

    Table  1   Coordinates of selected homonymous feature points

    同名特征
    点编号
    单光子探测三维点
    云数据坐标
    可见光二维图像
    数据坐标
    XYZxy
    1 −29.818 18.508 202.967 755 111
    2 −29.382 13.623 203.706 758 187
    3 18.310 9.292 210.774 3 289
    4 −0.155 24.807 219.113 280 52
    5 4.070 19.222 210.738 212 123
    6 −13.211 24.477 216.124 481 53
    7 −41.711 −19.570 203.035 973 696
    8 18.071 −13.967 215.761 28 647
    9 18.814 −11.266 215.044 23 600
    下载: 导出CSV

    表  2   融合处理的直接线性变换参数解算结果

    Table  2   Calculated results of direct linear transformation parameters by fusion processing

    特征参数解算后的参数值
    ${l_1}$ 2.9811
    ${l_2}$ 0.3552
    ${l_3}$ 1.2046
    ${l_4}$ −315.0276
    ${l_5}$ −0.5305
    ${l_6}$ −2.9367
    ${l_7}$ 2.9885
    ${l_8}$ −701.5553
    ${l_9}$ 0.0009
    ${l_{10}}$ −0.0004
    ${l_{11}}$ −0.0038
    下载: 导出CSV
  • [1] 侯利冰, 黄庚华, 况耀武, 等. 光子计数激光测距技术研究[J]. 科学技术与工程,2013,13(18):5186-5190. doi: 10.3969/j.issn.1671-1815.2013.18.020

    HOU Libing, HUANG Genghua, KUANG Yaowu, et al. Research of photon counting laser ranging technology[J]. Science Technology and Engineering,2013,13(18):5186-5190. doi: 10.3969/j.issn.1671-1815.2013.18.020

    [2] 罗智斌, 张彦峰, 曹宁. 一种基于融合地面LIDAR 点云与红外视频信息的热红外三维建模方法[J]. 广东技术师范学院学报(自然科学),2014(3):55-58.

    LUO Zhibin, ZHANG Yanfeng, CAO Ning. Thermal infrared three-dimensional modeling method based on the fusion of LIDAR point and ground infrared video information[J]. Journal of Guangdong Polytechnic Normal University,2014(3):55-58.

    [3] 李娜. 沙漠地区机载激光点云和光学影像配准及应用研究[D]. 武汉: 武汉大学, 2015.

    LI Na. Registration of airborne LiDAR point cloud and aerial imagery for desert areas[D]. Wuhan: Wuhan University, 2015.

    [4] 吴伟坊. 基于机载LiDAR系统激光点云与图像点云的融合技术[D]. 广州: 华南理工大学, 2019.

    WU Weifang. Fusion technology of laser point cloud and image point cloud based on airborne LiDAR system[D]. Guangzhou:South China University of Technology, 219.

    [5] 王宇岚, 孙韶媛, 刘致驿, 等. 基于多视角融合的夜间无人车三维目标检测[J]. 应用光学,2020,41(2):296-301. doi: 10.5768/JAO202041.0202002

    WANG Yulan, SUN Shaoyuan, LIU Zhiyi, et al. Nighttime three-dimensional target detection of driverless vehicles based on multi-view channel fusion network[J]. Journal of Applied Optics,2020,41(2):296-301. doi: 10.5768/JAO202041.0202002

    [6] 吴锦秋, 刘汉君, 杨家开, 等. 可见光影像与激光雷达点云融合技术在配网树障巡检中的应用[J]. 湖南电力,2020,40(6):45-52. doi: 10.3969/j.issn.1008-0198.2020.06.010

    WU Jinqiu, LIU Hanjun, YANG Jiakai, et al. Application of visible image and LiDAR point cloud fusion technology in distribution network tree barrier inspection[J]. Hunan Electric Power,2020,40(6):45-52. doi: 10.3969/j.issn.1008-0198.2020.06.010

    [7] 牛京玉, 胡坚, 贺文静, 等. 基于C6678的主被动三维影像生成算法并行设计[J]. 红外技术,2017,39(11):983-989.

    NIU Jingyu, HU Jian, HE Wenjing, et al. The parrallel design of active-passive 3D image generation algorithm based on C6678[J]. Infrared Technology,2017,39(11):983-989.

    [8]

    DEGNAN J J. Photon-counting multikilohertz microlaser altimeters for airborne and spaceborne topographic measurements[J]. Journal of Geodynamics,2002,34:503-549. doi: 10.1016/S0264-3707(02)00045-5

    [9] 李铭, 郭颖, 杨贵, 等. 一种推扫式光子计数激光雷达点云滤波算法及其验证[J]. 科学技术与工程,2017,17(9):53-58. doi: 10.3969/j.issn.1671-1815.2017.09.009

    LI Ming, GUO Ying, YANG Gui, et al. A noise filter method for the push-broom photon counting lidar and airborne cloud data verification[J]. Science Technology and Engineering,2017,17(9):53-58. doi: 10.3969/j.issn.1671-1815.2017.09.009

    [10] 黎荆梅, 周梅, 张正, 等. 三维成像载荷地面快速融合处理方法研究[J]. 科学技术与工程,2015,15(13):114-117. doi: 10.3969/j.issn.1671-1815.2015.13.020

    LI Jingmei, ZHOU Mei, ZHANG Zheng, et al. Research on fast fusion of laser point cloud and CCD image acquired by the 3D imaging payload[J]. Science Technology and Engineering,2015,15(13):114-117. doi: 10.3969/j.issn.1671-1815.2015.13.020

    [11] 李小朋, 唐伶俐, 周梅,等. 基于转台的线阵激光雷达地面检校方法研究[J]. 遥感信息,2011(6):87-91. doi: 10.3969/j.issn.1000-3177.2011.01.018

    LI Xiaopeng, TANG Lingli, ZHOU Mei, et al. Research on linear array LiDAR calibration based on rotating platform[J]. Remote Sensing Information,2011(6):87-91. doi: 10.3969/j.issn.1000-3177.2011.01.018

    [12] 梁新合, 梁晋, 郭成, 等. 法向约束的多幅点云数据融合算法[J]. 西安交通大学学报,2009,43(5):71-75. doi: 10.3321/j.issn:0253-987X.2009.05.015

    LIANG Xinhe, LIANG Jin, GUO Cheng, et al. Multi-range images integration algorithm based on normal constraint[J]. Journal of Xi'an Jiaotong University,2009,43(5):71-75. doi: 10.3321/j.issn:0253-987X.2009.05.015

    [13] 王敏. 摄影测量与遥感[M]. 武汉: 武汉大学出版社, 2011.

    WANG Min. Photogrammetry and remote Sensing[M]. Wuhan: Wuhan University Press, 2011.

    [14]

    SCHENK T, CSATHO B. Fusion of LIDAR data and aerial imagery for a more complete surface description[J]. IAPRS,2002,33:310-317.

    [15] 徐勇, 裴海龙. 基于特征的机载激光点云与影像数据的融合[J]. 计算机测量与控制,2014,22(2):607-610. doi: 10.3969/j.issn.1671-4598.2014.02.093

    XU Yong, PEI Hailong. Fusion of airborne laser point clouds and area-array data based on features[J]. Computer Measurement & Control,2014,22(2):607-610. doi: 10.3969/j.issn.1671-4598.2014.02.093

    [16] 米晓峰, 李传荣, 苏国中,等. LiDAR 数据与CCD 影像融合算法研究[J]. 微计算机信息,2010,26(4):113-122. doi: 10.3969/j.issn.2095-6835.2010.04.046

    MI Xiaofeng, LI Chuanrong, SU Guozhong, et al. Research on LiDAR and CCD images fusion algorithm[J]. Microcomputer Information,2010,26(4):113-122. doi: 10.3969/j.issn.2095-6835.2010.04.046

  • 期刊类型引用(5)

    1. 郑婕,张立冬,刘敏,熊伟,徐海舟. 基于云计算的信息化网络多通道数据快速融合方法. 自动化与仪器仪表. 2024(07): 213-216 . 百度学术
    2. 郑叶龙,李长勇,夏宁宁,李玲一,张国民,赵美蓉. 基于“十字”标志物的红外图像与三维点云融合方法. 天津大学学报(自然科学与工程技术版). 2024(10): 1090-1099 . 百度学术
    3. 郑素珍. 旋转物体的单光子三维重建技术. 应用光学. 2024(05): 879-884 . 本站查看
    4. 吴海丽. 基于多尺度Retinex的受云雾影响可见光图像增强研究. 激光杂志. 2023(04): 185-189 . 百度学术
    5. 傅建明,鲍艳,高圣斐. 基于FPGA的低分辨率激光图像增强系统研究. 激光杂志. 2023(12): 115-119 . 百度学术

    其他类型引用(2)

图(6)  /  表(2)
计量
  • 文章访问数:  889
  • HTML全文浏览量:  574
  • PDF下载量:  54
  • 被引次数: 7
出版历程
  • 收稿日期:  2021-07-01
  • 修回日期:  2021-08-19
  • 网络出版日期:  2021-10-18
  • 刊出日期:  2021-11-11

目录

    /

    返回文章
    返回