Fast and high-precision electric adjusting mirror
-
摘要: 高能激光合束系统中反射镜在工作前需要进行快速高精度的指向调整。设计了一种二维电控调整镜,系统主体采用一体化的柔性支撑设计,驱动采用步进电机配合减速机构带动螺杆实现,反射镜偏转角度的精密测量采用电涡流传感器,使用数字信号处理器(DSP)作为主控模块。对系统的工作原理和设计进行了分析,对系统标定方法和控制算法进行了深入研究。为了满足系统调整速度的要求,采用S形加减速算法作为调整镜的控制算法,采用分段线性的系统标定方法。最后对系统进行了实验测试,结果表明,在±500″角度范围内,调整镜到位时间在3 s以内,控制误差小于2″,可以满足系统要求。Abstract: The mirror in the high-energy laser beam combining system needs to make a fast and high-precision pointing adjustment before working. A two-dimensional electrically controlled adjusting mirror was designed. The main body of the system adopted an integrated flexible support design, the drive adopted a stepping motor and a deceleration mechanism to drive the screw, the precision measurement of the mirror deflection angle adopted an eddy current sensor, and the digital signal processor (DSP) was adopted as the main control module. The working principle and design of the system were analyzed, and the system calibration method as well as the control algorithm were deeply studied. In order to meet the requirements of system adjustment speed, the S-shaped acceleration and deceleration algorithm was adopted as the control algorithm of adjusting mirror, and the system calibration method with piecewise linearity was adopted. Finally, the system was tested experimentally. The experimental results show that within the angle range of ±500″, the in-position time of adjusting mirror is within 3 s, and the control error is less than 2″, which can meet the system requirements.
-
-
表 1 程序伪代码
Table 1 Program pseudo-code
伪代码 If A/D值<分区值1 角度值x=曲面公式1x If A/D值<分区值2 角度值x1=曲面公式1x 角度值x2=曲面公式2x 角度值x=加权(角度值x1+角度值x2) If A/D值>分区值5 角度值x=曲面公式3x If A/D值>分区值4 角度值x3=曲面公式3x 角度值x2=曲面公式2x 角度值x=加权(角度值x3+角度值x2) else 角度值x=曲面公式2x 函数返回值为角度值x 表 2 调整镜线性度测试表
Table 2 Linearity test of adjusting mirror
(″) X Y AngleX AngleY Error 0 0 0 0 0 50 50 50.6 50.3 0.6/0.3 100 −100 100.1 −101.2 0.6/1.2 150 150 150.3 150.2 0.3/0.2 200 200 200.5 201 0.5/1 −300 300 −301 300.3 1/0.3 400 −400 398.5 −401.4 −1.5/1.4 500 500 498.6 499.2 −1.4/−0.8 -
[1] 郭豹, 张兵, 黄伟, 等. 一种基于偏转镜的激光空间合束方法研究[J]. 电光与控制,2018,25(5):96-99. doi: 10.3969/j.issn.1671-637X.2018.05.020 GUO Bao, ZHANG Bing, HUANG Wei, et al. A laser beam-combining method in space based on deflection mirror[J]. Electronics Optics & Control,2018,25(5):96-99. doi: 10.3969/j.issn.1671-637X.2018.05.020
[2] FANG Chu, GUO Jin, YANG Guoqing, et al. Design and performance test of a two-axis fast steering mirror driven by piezoelectric actuators[J]. Optoelectronics Letters,2016,12(5):1-5.
[3] CHEN Wei, CHEN Sihai, WU Xin, et al. A new two-dimensional fast steering mirror based on piezoelectric actuators[J].IEEE: Information Science and Technology (ICIST), 2014(2): 1-5.
[4] 刘力双, 夏润秋, 吕勇, 等. 音圈电机快速控制反射镜研究现状[J]. 激光杂志,2020,41(9):1-7. LIU Lishuang, XIA Runqiu, LYU Yong, et al. Research situation of fast steering mirror driven by voice coil motor[J]. Laser Journal,2020,41(9):1-7.
[5] XIAO Ruijiang, XU Minglong, SHAO Shubao, et al. Design and wide-bandwidth control of large aperture fast steering mirror with integrated-sensing unit[J]. Mechanical Systems and Signal Processing,2019,126:211-213. doi: 10.1016/j.ymssp.2019.02.028
[6] 吴琼雁, 王强, 彭起, 等. 音圈电机驱动的快速控制反射镜高带宽控制[J]. 光电工程,2004,31(8):15-18. WU Qiongyan, WANG Qiang, PENG Qi, et al. Wide bandwidth control of fast-steering mirror driven by voice coil motor[J]. Opto-Electronic Engineering,2004,31(8):15-18.
[7] 凡木文, 黄林海, 李梅, 等. 抑制光束抖动的压电倾斜镜高带宽控制[J]. 物理学报,2016,65(2):1-8. FAN Muwen, HUANG Linhai, LI Mei, et al. High-bandwidth control of piezoelectric steering mirrorfor suppression of laser beam jitter[J]. Acta Physica Sinica,2016,65(2):1-8.
[8] 彭元镜, 许明明, 陈忆, 等. 大型矩形准直镜柔性支撑系统的多目标优化设计和稳定性分析[J]. 应用光学,2021,42(2):215-222. doi: 10.5768/JAO202142.0201002 PENG Yuanjing, XU Mingming, CHEN Yi, et al. Multi objective optimization design and stability analysis of flexible support system for large rectangular collimating mirror[J]. Journal of Applied Optics,2021,42(2):215-222. doi: 10.5768/JAO202142.0201002
[9] 廉明. 高精度大通光口径反射镜架微驱动组件的研究[D]. 哈尔滨: 哈尔滨工业大学, 2006. LIAN Ming. The research of high precision large caliber reflective mirror micro drive equipment[D]. Harbin: Harbin Institute of Technology, 2006.
[10] 彭树萍, 王伟国, 于洪君. 激光对准快速反射镜控制系统的设计[J]. 激光技术,2013(4):431-436. doi: 10.7510/jgjs.issn.1001-3806.2013.04.004 PENG Shuping, WANG Guowei, YU Hongjun. Design of a control system of fast reflector in a laser autocollimator[J]. Laser Technology,2013(4):431-436. doi: 10.7510/jgjs.issn.1001-3806.2013.04.004
[11] 姚绪梁, 张永奇, 王景芳. 一种变细分数的3D打印步进电机控制方法[J]. 电气传动,2019,49(1):65-67. YAO Xuliang, ZHANG Yongqi, WANG Jingfang. A method for controlling 3D printer stepper motor with variable subdivision[J]. Electric Drive,2019,49(1):65-67.
[12] SUN Shoumei, WANG Jinghui. Implementation of stepper motor's S-curve trajectories control[J]. Applied Mechanics and Materials,2015,3827:260-263.
[13] 赵继庭, 金刚石, 高旭辉. 基于快速反射镜的模糊自适应PID控制算法研究[J]. 激光与红外,2018,48(6):756-761. doi: 10.3969/j.issn.1001-5078.2018.06.016 ZHAO Jiting, JIN Gangshi, GAO Xuhui. Fuzzy adaptive PID control algorithm based on fast steering mirror[J]. Laser and Inferared,2018,48(6):756-761. doi: 10.3969/j.issn.1001-5078.2018.06.016
[14] XIAO Ruijiang, XU Minglong, SHAO Shubao, et al. Design and wide-bandwidth control of large aperture fast steering mirror with integrated-sensing unit[J]. Mechanical Systems and Signal Processing,2019,126:211-226.
[15] QU Zilian, ZHAO Qian, MENG Yonggang. Improvement of sensitivity of eddy current sensors for nano-scale thickness measurement of Cu films[J]. NDT & E International,2014,61:53-57.
[16] 刘学, 王艳林, 高宏, 等. 高精度电涡流传感器的标定研究[J]. 数字技术与应用,2019,37(1):80-81. LIU Xue, WANG Yanlin, GAO Hong, et al. Calibration of high precision eddy current sensor[J]. Digital Technology and Application,2019,37(1):80-81.
-
期刊类型引用(4)
1. 李彬鹏,茅健. 大尺寸飞机零部件检测技术研究进展. 上海工程技术大学学报. 2021(04): 346-353 . 百度学术
2. 李晶,车英,宋暖,翟艳男,陈大川,李君. 三维激光雷达共光路液体透镜变焦光学系统设计. 红外与激光工程. 2019(04): 184-192 . 百度学术
3. 黄慧妍. 无人驾驶激光雷达发射光学系统设计. 光电子技术. 2018(02): 127-131 . 百度学术
4. 潘力. 激光数据存储系统的设计与实现. 激光杂志. 2018(05): 156-159 . 百度学术
其他类型引用(3)