面向冰盖剖面的高空间分辨率分布式光纤测温系统设计

High spatial resolution distributed optical fiber temperature measurement system for ice cover profile

  • 摘要: 针对现有冬季冰盖垂直剖面温度检测技术的不足,设计了一种具有高空间分辨率的分布式光纤测温系统,介绍了系统的测量原理和总体结构,提出使用反卷积校正算法,避免了因受系统有限带宽影响而导致的测温不准,从而提升空间分辨率。同时进行了相关测温实验。该算法可以在保证温度测量精度的前提下,将系统的空间分辨率从1.3 m提升至0.5 m。设计了一种具有垂直高分辨率的温度测量装置,可以精确检测冰盖内部垂直方向上的温度变化,实现对冰盖厚度的识别。

     

    Abstract: A distributed optical fiber temperature measurement system with a high spatial resolution was designed to overcome the shortcomings of the existing vertical profile temperature measurement technology for winter ice cover. The measurement principle and overall structure of the system were introduced, and the deconvolution correction algorithm was proposed to avoid the inaccurate temperature measurement caused by the limited bandwidth of the system, thereby enhancing the spatial resolution. At the same time, the relevant temperature measurement experiments were carried out. The algorithm could improve the spatial resolution of the system from 1.3 m to 0.5 m under the premise of ensuring the accuracy of temperature measurement. On this basis, a temperature measurement device with a high vertical resolution was designed, which could accurately detect the temperature change in the vertical direction of the ice cover to achieve the purpose of identifying the thickness of the ice cover.

     

/

返回文章
返回