基于水幕的舰船红外干扰策略研究

Research on ship infrared jamming strategy based on water curtain

  • 摘要: 传统的红外成像反舰导弹的干扰策略如热焰弹和烟雾等已经不能很好地应对新型红外成像反舰导弹的威胁,针对该问题,设计一种在舰船表面不同分区施加水幕来对抗红外成像反舰导弹的策略,采用建模仿真的方式开展了水幕对红外成像导引头干扰效果的研究。建立综合考虑海天背景的舰船红外辐射仿真模型,结合典型图像识别算法,分析制定了不同的水幕施加策略,利用仿真模型研究在一定距离不同策略下红外成像导引头对目标识别的成功率;根据识别结果和算法原理对水幕施加策略进行优化,优化后的分区水幕施加策略可使导引头对目标的识别成功率下降约60%。最后通过在现实场景中搭建的降温缩比试验装置验证了水幕的降温效果。

     

    Abstract: Since the jamming strategy of traditional infrared imaging anti-ship missile, such as hot flame bomb and smog, which could not be good deal with the threat of new infrared imaging anti-ship missile, a strategy of applying water curtain to different zones of ship surface to counter the infrared imaging anti-ship missile was designed, and the jamming effect of water curtain on infrared imaging seeker was studied by modeling and simulation. The simulation model of ship infrared radiation which comprehensively considered the sea-sky background was established, and combined with the typical image recognition algorithm, the different water curtain application strategies were developed. The simulation model was used to study the success rate of infrared imaging seeker for target recognition under a certain distance and different strategies. According to the recognition results and algorithm principle, the water curtain application strategy was optimized. The optimized partition water curtain application strategy could reduce the recognition success rate of the seeker to target by about 60%. Finally, the cooling effect of water curtain was verified by the cooling shrinkage ratio test device built in the real scenes.

     

/

返回文章
返回