Aberration calculation of catadioptric combined optical system with oblique incidence
-
摘要: 基于平面对称光栅反射镜系统的像差理论,根据光学元件材料折射率对成像光束波像差进行修正,将像差理论扩展到平面对称折射光学系统,使得该理论可应用于光束斜入射的折反射组合光学系统的像差计算;指出在折反射组合光学系统中考虑物像方空间折射率的关系,以及入射角方向的定义,使得波像差的计算表达式保持统一;应用扩展后的像差理论对折反射椭球镜面形检测光学系统进行像差分析计算,并与Zemax光线追迹结果进行对比,验证波像差理论的有效性。该像差理论为光束斜入射的折反射组合光学系统的设计、像质评价及优化提供了有效的分析手段。Abstract: First, based on the aberration theory of the plane symmetric grating reflector system, the wave aberration of the imaging beam was corrected according to the optics material refractive index, and the aberration theory was extended to the plane symmetric refractive optical system, which made this theory can be applied to the aberration calculation of the catadioptric combined optical system with beam oblique incidence. Secondly, it was pointed out the computational expressions of wavefront aberration should be kept uniformed in view of the refractive index relationship between object and image spaces and the definition of direction of incident angle. Finally, the analysis and calculation were carried out on the aberration of the catadioptric ellipsoid mirror shape detection optical system by applying the extended aberration theory, and compared with the Zemax ray-tracing results to verify the effectiveness of the wave aberration theory. This aberration theory provides effective measures for the design of the catadioptric combined optical system with beam oblique incidence, the evaluation and optimization of image quality.
-
Keywords:
- aberration theory /
- plane-symmetric optical system /
- oblique incidence /
- catadioptric
-
-
表 1 椭球镜面形检测系统的光学参数
Table 1 Optical parameters of surface-shape detection optical system of ellipsoidal mirror
光学面 曲率半径R/mm 元件间距d/mm 材料 圆锥系数 1 38.74 200 Mirror −0.98 STO Infinite 2.39 − 0 2 15.00 12.00 BK7 0 3 75.00 32.068 − 0 注:椭球镜的顶点曲率半径$R = {{{b^2}} / a}$;椭球镜的半长轴$a{\rm{ = 1 937}}$ mm;半短轴$b{\rm{ = 273}}{\rm{.93}}$ mm。 -
[1] 周星光, 贺宇, 王岭雪, 等. 单视点双曲面折反射红外全景成像系统设计与分析[J]. 红外与激光工程,2016,45(9):204-212. ZHOU Xingguang, HE Yu, WANG Lingxue, et al. Design and performance analysis of single-viewpoint hyperbolic catadioptric infrared panoramic imaging system[J]. Infrared and Laser Engineering,2016,45(9):204-212.
[2] 庄雯, 姜肇国, 徐熙平, 等. 非球面折反射全景成像系统设计[J]. 长春理工大学学报(自然科学版),2019,42(2):14-16. ZHUANG Wen, JIANG Zhaoguo, XU Xiping, et al. Design of aspherical catadioptric panorama image system[J]. Journal of Changchun University of Science and Technology(Natural Science Edition),2019,42(2):14-16.
[3] 范志刚, 王方博, 陈守谦, 等. 消畸变成像折反射全景成像系统设计[J]. 应用光学,2011,32(5):817-821. FAN Zhigang, WANG Fangbo, CHEN Shouqian, et al. Catadioptric omnidirectional system with undistorted imaging[J]. Journal of Applied Optics,2011,32(5):817-821.
[4] 马相路, 冯莹, 曹毓. 双曲凹面折反射全景成像系统[J]. 红外与激光工程,2013,42(8):2132-2136. doi: 10.3969/j.issn.1007-2276.2013.08.036 MA Xianglu, FENG Ying, CAO Yu. Concave hyperboloidal catadioptric omnidirectional imaging system[J]. Infrared and Laser Engineering,2013,42(8):2132-2136. doi: 10.3969/j.issn.1007-2276.2013.08.036
[5] 张珑, 胡文琦, 郑列华等. 折反射式零位补偿检验[J]. 光子学报,2016,45(7):13-17. ZHANG Long, HU Wenqi, ZHENG Liehua, et al. Catadioptric null compensating test[J]. Acta Photonica Sinica,2016,45(7):13-17.
[6] 潘君骅. 光学非球面的设计、加工与检验[M]. 苏州: 苏州大学出版社, 2005: 37-50. PAN Junhua. The design manufacture and test of the aspherical optical surfaces[M]. Suzhou: Suzhou University Press, 2005: 37-50.
[7] BORN M, WOLF E. Principles of optics[M]. USA: The Press Syndicate of the University of Cambridge, 1999: 199-219.
[8] LYU Lijun. Aberration theory of plane-symmetric grating systems[J]. Synchrotron Radiat,2008,15:399-410. doi: 10.1107/S0909049508003658
[9] 吕丽军, 石亮. 平面对称光学系统像差理论的扩展[J]. 光学精密工程,2009,17(12):2975-2982. doi: 10.3321/j.issn:1004-924X.2009.12.015 LYU Lijun, SHI Liang. Generalization of aberration theory of plane-symmetric optical systems[J]. Optics and Precision Engineering,2009,17(12):2975-2982. doi: 10.3321/j.issn:1004-924X.2009.12.015
[10] NAMIOKA T, KOIKE M, CONTENT D. Geometric theory of the ellipsoidal grating[J]. Applied Optics,1994,33(31):7261-7274. doi: 10.1364/AO.33.007261
[11] PEATMAN W B. Gratings, mirror and slits: Beamline design for soft X-ray synchrotron radiation sources[M]. [s.l.]:Gordon and Beach Science Publisher, 1997: 71-75.
[12] LYU Lijun, HU Xiaoyan, SHENG Cuilian. Optimization method for ultra-wide-angle and panoramic optical systems[J]. Applied Optics,2012,51(17):3776-3786. doi: 10.1364/AO.51.003776
[13] LYU Lijun, DENG Zhiyong. Geometric characteristics of aberration of plan-symmetric optical systems[J]. Applied Optics,2009,48(36):6946-6960. doi: 10.1364/AO.48.006946
[14] NODA H, NAMIOKA T, SEYA M. Geometrical theory of the grating[J]. J. Opt. Soc. Am.,1974,64(8):1031-1036. doi: 10.1364/JOSA.64.001031
[15] Zemax Development Corporation. Zemax User’s Guide[M]. USA: Zemax Development Corporation, 2007.
-
期刊类型引用(2)
1. 王伟,周刚. 一种基于改进的巴氏系数的协同过滤推荐算法. 计算机应用研究. 2020(12): 3569-3571 . 百度学术
2. 范舜奕,管桦,侯志强,余旺盛,戴铂. 利用选择性模型不定时更新的视觉跟踪算法. 中国图象图形学报. 2016(06): 745-755 . 百度学术
其他类型引用(1)