Point spread function acquisition of light field camera in 3D dose verification system for radiotherapy
-
摘要: 基于闪烁光场成像的放疗新型3D剂量测量中,需利用点扩散函数将每一个二维平面的真实闪烁光数据从重叠图像中提取出来。利用刀口法,结合光场数字重聚焦以及聚焦测距法,实验获取光场相机不同重聚焦位置处的点扩散函数,并给出棋盘格标定板在参数α=0.6时的重聚焦面聚焦在α=0.7位置处的高斯离焦点扩散函数表达式,研究光场相机点扩散函数的规律,通过测量几个必要值便可由函数拟合得到所有点扩散函数,减少光学分层成像中因分层数量增加引起的标定工作量。将结果引入图像处理,通过反卷积运算可获得每一个二维重聚焦面的真实闪烁光数据,有助于3D剂量的实时精确测量。Abstract: In advanced 3D dose verification system for radiotherapy based on scintillation light field imaging, it is necessary to use the point spread function to extract the real scintillation light data of each 2D plane from the overlapping images. The point spread functions of the light field camera at different refocusing positions are measured by knife-edge method combining the digital refocusing of light field and the focussing ranging method. And when the refocusing plane refocused at α=0.6, the function expression of Gaussian defocus for checkerboard calibration plate at α=0.7 was given. The law of light field camera point spread function was studied. All point spread functions could be obtained through function fitting by measuring five necessary values and the workload of point spread function calibration caused by the increase of the number of layers in optical layered imaging was reduced by using this law. Introducing the research results into image processing could obtain the real scintillation data of each 2D refocusing surface through deconvolution operation, which would be helpful for the real-time and accurate measurement of 3D dose.
-
-
表 1 灰度值的阶跃函数拟合得到的σ值
Table 1 σ values obtained by step function fitting of gray value
σ(fitting values) σ(average) h(1,1) 1.7575 1.7972 1.6650 1.9002 1.5879 1.7416 h(1,2) 2.1958 1.8310 2.0035 1.7968 1.9951 1.9644 h(1,3) 2.6024 2.7266 2.8954 3.1100 2.4014 2.7472 h(2,1) 3.4686 3.4609 3.3747 3.8571 3.7960 3.5915 h(2,2) 1.6504 1.7625 1.6619 1.6045 1.5275 1.6414 h(2,3) 1.8200 2.2526 1.8180 2.0692 1.8146 1.9549 h(3,1) 4.2815 4.5886 4.6952 4.1621 4.5598 4.4574 h(3,2) 2.6816 2.6859 2.2923 2.6932 2.6208 2.5948 h(3,3) 1.5570 1.7985 1.6752 1.4891 1.7167 1.6473 表 2 高斯离焦模型参数σ值
Table 2 σ values of Gaussian defocus model
0.7 0.8 0.9 1.0 1.1 σ1 σ2 平均 σ1 σ2 平均 σ1 σ2 平均 σ1 σ2 平均 σ1 σ2 平均 1.4020 1.4115 1.4068 1.6408 1.6442 1.6425 2.1934 2.1877 2.1906 2.5380 2.5401 2.5391 3.1135 3.1274 3.1205 1.6165 1.6261 1.6213 1.2169 1.2257 1.2213 1.6113 1.5805 1.5959 1.9534 1.9963 1.9749 2.5159 2.4230 2.4695 1.9852 1.9778 1.9815 1.5853 1.5832 1.5843 1.2048 1.2143 1.2048 1.5614 1.5533 1.5574 2.0782 2.0156 2.0469 2.3196 2.2931 2.3064 1.5148 1.4900 1.5024 1.2079 1.1860 1.1970 1.1073 1.0559 1.0816 1.4853 1.4905 1.4879 2.7577 2.8124 2.7851 1.8811 1.8180 1.8496 1.4382 1.4196 1.4289 1.2034 1.2104 1.2069 1.0063 0.9887 0.9975 -
[1] 陈勇, 包尚联, 黄斐增,等. HW-PLAN放射治疗计划系统的实验验证[J]. 中国医学物理学杂志,2005,22(6):691-694. doi: 10.3969/j.issn.1005-202X.2005.06.002 CHEN Yong, BAO Shanglian, HUANG Feizeng, et al. Experimental verification of HW-plan treatment planing systerm[J]. Chinese Journal of Medical Physics,2005,22(6):691-694. doi: 10.3969/j.issn.1005-202X.2005.06.002
[2] 朱煜和, 易忠诚, 肖明勇. 放射治疗剂量验证的现状及进展[J]. 生物医学工程学杂志,2013,30(6):1358-1361. ZHU Yuhe, YI Zhongcheng, XIAO Mingyong. Present situation and progress of dose verfication in radiotherapy[J]. Journal of Biomedical Energineering,2013,30(6):1358-1361.
[3] 王文, 程梦云, 杨琪, 等. 基于MCNP源子程序的放射治疗剂量计算验证方法[J]. 中国医学物理学杂志,2015,32(1):13-16. doi: 10.3969/j.issn.1005-202X.2015.01.004 WANG Wen, CHENG Mengyun, YANG Qi, et al. A dose verification method based on MCNP source subroutine for radiotherapy[J]. Chinese Journal og Medical Physics,2015,32(1):13-16. doi: 10.3969/j.issn.1005-202X.2015.01.004
[4] GOTSTEDT J, HAUER A K, BACK A. Complexity metric as a complement to measurement based IMRT/VMAT patient-specific QA[J]. Journal of Physics,2015,573:012016.
[5] YOUNG T, XING A T, et al. Sensitivity of collapsed arc QA method for delivery errors in volumetric modulated arc therapy (VMAT)[J]. Journal of Physics,2015,573:012021.
[6] 康世功. “互联网+”和人工智能背景下的肿瘤精准放疗产业现状与发展趋势[J]. 产业创新研究,2018(5):10-15. KANG Shigong. The status and development trend of the tumor precise radiotherapy industry under the background of “Internet +” and artificial intelligence[J]. Industrial Innovation,2018(5):10-15.
[7] BALDOCK C, De DEENE Y, DORAN S, et al. Polymer gel dosimetry[J]. Phys. Med. Biol.,2010,55(5):R1-R63.
[8] LOW D. The importance of 3D dosimetry[J]. Journal of Physics,2015,573:012009.
[9] GOULET M, RILLING M, GINGRAS L, et al. Novel, full 3D scintillation dosimetry using a static plenoptic camera[J]. Medical Physics,2014,41:082101.
[10] 邹谋炎. 反卷积和信号复原[M]. 北京: 国防工业出版社, 2001: 30-45. ZOU Mouyan. Deconvolution and signal recovery[M]. Beijing: National Defense Industry Press, 2001: 30-45.
[11] 李宗琦. 先拍照后对焦, 向您介绍革命性新相机LYTRO——光场相机的原理、技术创新和应用[J]. 物理,2012,41(4):256-258. LEE C. Take a picture before focused, introducing the revolutionary new camera LYTRO for you: the principle, technical innovation and application of the light field camera[J]. Physics,2012,41(4):256-258.
[12] DANSEREAU D. Light field toolbox v0.4[EB/OL]. [2012-02-12]. https://ww2.mathworks.cn/matlabcentral/fileexchange/49683-light-field-toolbox-v0-4.
[13] [s. n]. Instructions for using of light field and light field ToolBox[EB/OL]. [2017-02-01]. https://www.vincentqin.tech/posts/LightField-Toolbox.
[14] 闫学文, 何良, 李华, 等. 基于闪烁体3D剂量测量系统中光场重聚焦位置的标定方法[J]. 应用光学,2020,41(4):822-828. YAN Xuewen, HE Liang, LI Hua, et al. Calibration method of light field refocusing position in 3D dose measurement system based on scintillator[J]. Journal of Applied Optics,2020,41(4):822-828.
[15] 胡江海. 基于液体变焦透镜的光学分层成像火焰三维温度测量方法研究[D]. 南京: 东南大学, 2016. HU Jianghai. Study on 3D flame temperatuere reconstruction through liquid zoom lens based optical sectioning tomography[D]. Nanjing: Southeast University, 2016.
[16] CHOI T. IKONOS satellite on orbit modulation transfer function (MTF) measurement using edge and pulse method[D]. Brookings, USA: South Dakota State University, 2002.
-
期刊类型引用(1)
1. 刘尚旺, 郜刘阳, 王博. 联合双边滤波器和小波阈值收缩去噪算法研究. 国土资源遥感. 2018(02): 114-124 . 百度学术
其他类型引用(1)