一种光电载荷非线性隔振装置的研究

Research on nonlinear vibration isolation device for electro-optic payload

  • 摘要: 针对光电载荷对隔振性能的需求,提出一种采用菱形连杆机构作为负刚度组件,具有高静、低动刚度特点的非线性隔振器(简称菱形HSLDS隔振器)。采用静力学分析方法,建立了隔振器数学模型,研究了刚度参数设定以及非线性调节方法;利用谐波平衡法(HBM)求解动力学方程,分析了各参数对隔振性能的影响关系;采用动力学仿真软件ADAMS及实物样机对理论模型与结论进行了验证。测试结果表明:菱形HSLDS隔振器具有较方便的参数调整能力,零位刚度及刚度非线性可通过拉簧参数与连杆参数进行设定、优化,隔振的刚度非线性优化程度受主隔振器阻尼以及零位刚度参数影响。相比于传统线性隔振器,菱形HSLDS具有显著的非线性隔振优势,可较好地满足光电载荷隔振需求。

     

    Abstract: In order to meet the requirements of electro-optic payload on vibration isolation performance, a high static stiffness and low dynamic stiffness nonlinear vibration isolator with rhombus linkage mechanism as negative stiffness component (rhombus HSLDS vibration isolator) was proposed. The mathematical model of vibration isolator was established by statics analysis method, and stiffness parameter setting and nonlinear adjustment methods were studied; the harmonic balance method (HBM) was used to solve the kinetic equation, and influence of parameters on the vibration isolation performance was analyzed; the theoretical model and conclusions were verified by kinetic simulation software ADAMS and prototype. The test results show that the rhombus HSLDS vibration isolator has convenient parameter adjustment capability, and the zero-position stiffness and stiffness nonlinearity can be set and optimized by parameters of tension spring and linkage. And the optimization effect of vibration isolation caused by stiffness nonlinearity is affected by the damping of main vibration isolator and zero-position stiffness parameter. Compared with traditional linear vibration isolator, the rhombus HSLDS vibration isolator has significant advantage of nonlinear vibration isolation and can better meet the needs of electro-optic payload vibration isolation requirements.

     

/

返回文章
返回