分布式光纤声波振动传感系统研发及应用

董小卫, 谢斌, 潘勇, 王宁博, 舒博钊, 刘帅

董小卫, 谢斌, 潘勇, 王宁博, 舒博钊, 刘帅. 分布式光纤声波振动传感系统研发及应用[J]. 应用光学, 2020, 41(6): 1298-1304. DOI: 10.5768/JAO202041.0608002
引用本文: 董小卫, 谢斌, 潘勇, 王宁博, 舒博钊, 刘帅. 分布式光纤声波振动传感系统研发及应用[J]. 应用光学, 2020, 41(6): 1298-1304. DOI: 10.5768/JAO202041.0608002
DONG Xiaowei, XIE Bin, PAN Yong, WANG Ningbo, SHU Bozhao, LIU Shuai. Development and application of distributed optical fiber acoustic vibration sensor system[J]. Journal of Applied Optics, 2020, 41(6): 1298-1304. DOI: 10.5768/JAO202041.0608002
Citation: DONG Xiaowei, XIE Bin, PAN Yong, WANG Ningbo, SHU Bozhao, LIU Shuai. Development and application of distributed optical fiber acoustic vibration sensor system[J]. Journal of Applied Optics, 2020, 41(6): 1298-1304. DOI: 10.5768/JAO202041.0608002

分布式光纤声波振动传感系统研发及应用

基金项目: 国家科技重大专项课题“致密油富集规律与勘探开发关键技术”(2016ZX05046-004)
详细信息
    作者简介:

    董小卫(1985−),男,硕士研究生,工程师,主要从事油气田开发井下光纤测试技术研究。E-mail:dongxw646567@126.com

    通讯作者:

    谢斌(1968−),男,教授级高工,主要从事油气田开发提高采收率技术研究。E-mail:binxie@petrochina.com.cn

  • 中图分类号: TN202

Development and application of distributed optical fiber acoustic vibration sensor system

  • 摘要: 针对油气田勘探开发需获取微声波信号完整波形的问题,开展了基于双脉冲外差调制与反正切外差解调方案的分布式光纤声波传感(DAS)技术研究与配套系统研发。通过特征参数室内振动模拟实验,新型DAS系统的响应频率范围20 Hz~25 kHz、最大动态范围60 dB、信噪比49 dB,满足微声波信号幅度、频率、相位等信息的探测需求。同时,该系统在新疆油田稠油热采井下蒸汽腔探测方面成功开展了现场应用,实测有效声压强度−195 dB,验证了系统的可靠性,具有良好的应用前景。
    Abstract: In view of the problem that the exploration and development of oil and gas fields need to obtain the complete waveform of micro acoustic disturbance signal, the research and development of distributed optical fiber acoustic sensor (DAS) technology and supporting system based on the scheme of double pulse heterodyne modulation and arctangent heterodyne demodulation were carried out. Combined with the indoor vibration simulation experiment of characteristic parameters, the response frequency range of the new DAS system is 20 Hz~25 kHz, the maximum dynamic range is 60 dB, and the signal-to-noise ratio is 49 dB, which can meet the detection requirements of micro acoustic wave of the amplitude, frequency and phase of the complete waveform. Meanwhile, the system has been successfully applied in the detection of underground steam cavity in heavy oil development of Xinjiang Oilfield. The actual effective sound pressure intensity is −195 dB, which verifies the reliability of the system and has a good application prospect.
  • 图  1   系统结构示意图

    Figure  1.   Structure diagram of system

    图  2   干涉信号反正切解调流程图

    Figure  2.   Flow chart of interference signal arctangent demodulation

    图  3   DAS系统室内实验结构图

    Figure  3.   Indoor experiment structure of DAS system

    图  4   振动信号时域重构与功率谱密度

    Figure  4.   Time-domain reconstruction and power spectrum density of vibration signal

    图  5   振动信号解调与功率谱密度

    Figure  5.   Vibration signal demodulation and power spectrum density

    图  6   解调信号幅度随电压的变化曲线

    Figure  6.   Change curve of demodulation signal amplitude with voltage

    图  7   解调信号幅度随频率的变化曲线

    Figure  7.   Change curve of demodulation signal amplitude with frequency

    图  8   3个PZT上同时施加不同振动信号的解调结果

    Figure  8.   Demodulation results of different vibration signals applied simultaneously on three PZT

    图  9   SAGD水平井循环预热DAS测试示意图

    Figure  9.   Schematic of circulating preheating and DAS test of SAGD horizontal well

    图  10   振动信号监测结果(10 h)

    Figure  10.   Vibration signal monitoring results (10 h)

    图  11   430 m处信号的时域与频域波形(10 h)

    Figure  11.   Time-domain and frequency-domain waveforms of signal at 430 m (10 h)

    图  12   振动信号监测结果(32 h)

    Figure  12.   Vibration signal monitoring results (32 h)

  • [1] 李登道, 耿杰, 王文涌. 光纤的结构及其传输特性分析[J]. 山东科技大学学报(自然科学版),2004,23(4):39-42.

    LI Dengdao, GENG Jie, WANG Wentong. The structure of optical fiber and analysis of its transmission characteristics[J]. Journal of Shandong University of Science and Technology (Natural Science),2004,23(4):39-42.

    [2] 侯俊芳, 裴丽, 李卓轩, 等. 光纤传感技术的研究进展及应用[J]. 光电技术应用,2012,27(1):49-53. doi: 10.3969/j.issn.1673-1255.2012.01.014

    HOU Junfang, PEI Li, LI Zhuoxuan, et al. Development and application of optical fiber sensing technology[J]. Electro-optic Technology Application,2012,27(1):49-53. doi: 10.3969/j.issn.1673-1255.2012.01.014

    [3] 李凤祥. 利用ODTR精确定位光缆故障点[J]. 电气化铁道,2008,12(2):48-50. doi: 10.3969/j.issn.1007-936X.2008.02.015

    LI Fengxiang. Using ODTR to locate the fault point of optical cable accurately[J]. Electric Railway,2008,12(2):48-50. doi: 10.3969/j.issn.1007-936X.2008.02.015

    [4] 吴晓斐. 基于ODTR的桥梁安全检测技术研究[D]. 上海: 华东师范大学, 2010.

    WU Xiaofei. Research on bridge safety detection technology based on ODTR[D]. Shanghai: East China Normal University, 2010.

    [5] 陈继宣, 龚华平, 金尚忠, 等. 基于Φ-ODTR的光纤入侵传感器系统的原理及研究进展[J]. 激光杂志,2009,30(26):4-6.

    CHEN Jixuan, GONG Huaping, JIN Shangzhong, et al. Development and principles of fiber optic intrusion sensor system based on Φ-ODTR[J]. Laser Journal,2009,30(26):4-6.

    [6]

    REN M Q, LU P, CHEN L, et al. Theoretical and experimental analysis of Φ-ODTR based on polarization diversity detection[J]. IEEE Photonics Technology Letters,2016,28(6):697-700. doi: 10.1109/LPT.2015.2504968

    [7] 马福, 王夏霄, 魏旭毫, 等. 基于Φ-ODTR的分布式光纤扰动传感系统研究现状[J]. 半导体光电,2018,39(1):1-5.

    MA Fu, WANG Xiaxiao, WEI Xuhao, et al. Research status of distributed optical fiber disturbance sensing system based on Φ-ODTR[J]. Semiconductor Optoelectronics,2018,39(1):1-5.

    [8]

    PARKER T, SHATALIN S, FARHADIROUSHAN M. Distributed acoustic sensing - a new tool for seismic applications[J]. First Break,2014,32(2):61-69.

    [9]

    HARRIS K, WHITE D, MELANSON D, et al. Feasibility of time-lapse VSP monitoring at the aquistore CO2 storage site using a distributed acoustic sensing system[J]. International Journal of Greenhouse Gas Control,2016,50:248-260. doi: 10.1016/j.ijggc.2016.04.016

    [10]

    BYERLEY G, MONK D, AARON P, et al. Time-lapse seismic monitoring of individual hydraulic frac stages using a downhole DAS array[J]. The Leading Edge,2018,37(11):802-810. doi: 10.1190/tle37110802.1

    [11]

    CORREA J, PEVZNER R, BONA A, et al. 3D vertical seismic profile acquired with distributed acoustic sensing on tubing installation: a case study from the CO2CRC Otway Project[J]. Interpretation,2019,7(1):SA11-SA19. doi: 10.1190/INT-2018-0086.1

    [12] 李腾飞, 于复生, 孙中国, 等. 双脉冲输出激光器设计[J]. 山东建筑大学学报,2014,29(6):585-589. doi: 10.3969/j.issn.1673-7644.2014.06.018

    LI Tengfei, YU Fusheng, SUN Zhongguo, et al. Design of the double pulse laser[J]. Journal of Shandong Jianzhu University,2014,29(6):585-589. doi: 10.3969/j.issn.1673-7644.2014.06.018

    [13] 沈兆国, 王建洲, 董涛, 等. 水下探测用高重频双波段激光器[J]. 应用光学,2017,38(4):670-67.

    SHEN Zhaoguo, WANG Jianzhou, DONG Tao, et al. High repetition rate dua-wavelength laser for under water detection[J]. Journal of Applied Optics,2017,38(4):670-67.

    [14] 关柏鸥. 双频干涉型光纤传感技术[J]. 光学与光电技术,2019,17(1):6-9.

    GUAN Baiou. Dual frequency interferometric fiber-optic sensing technology[J]. Optics& Optoelectronic Technology,2019,17(1):6-9.

    [15] 陈玲, 邓文怡, 娄小平. 基于多频外差原理的相位解包裹方法[J]. 光学技术,2012,38(1):73-78. doi: 10.3788/GXJS20123801.0073

    CHEN Ling, DENG Wenyi, LOU Xiaoping. Phase unwrapping method base on multi-frequency interferometry[J]. Optical Technique,2012,38(1):73-78. doi: 10.3788/GXJS20123801.0073

    [16] 蒋鹏, 倪明, 熊水东, 等. 基于外差解调的分布式光纤传感系统设计[J]. 半导体光电,2012,33(5):744-746, 751.

    JIANG Peng, NI Ming, XIONG Shuidong, et al. Design of distributed optical fiber sensing system based on heterodyne demodulation[J]. Semiconductor Optoelectronics,2012,33(5):744-746, 751.

    [17] 陈松林, 赵吉宾, 夏仁波. 多频外差原理相位解包裹方法的改进[J]. 光学学报,2016,36(4):155-165.

    CHEN Songlin, ZHAO Jibin, XIA Renbo. Improvement of the phase unwrapping method based on multi-frequency heterodyne principle[J]. Acta Optica Sinica,2016,36(4):155-165.

    [18] 张文华, 郭振, 牛疆航, 等. 基于外差解调的偏振分集接收技术的研究[J]. 光纤与电缆及其应用技术,2017,28(5):28-32.

    ZHANG Wenhua, GUO Zhen, NIU Jianghang, et al. Study on polarization diversity receiving technology based on heterodyne demodulation[J]. Optical Fiber& Electric Cable and Their Applications,2017,28(5):28-32.

    [19] 贾德利, 陆平平, 孙福超, 等. 油管声波传输特性机理及应用分析[J]. 哈尔滨理工大学学报,2015,20(6):93-97.

    JIA Deli, LU Pingping, SUN Fuchao, et al. The tubing sound waves mechanism of transmission feature and application analysis[J]. Journal of Harbin University of Science and Technology,2015,20(6):93-97.

  • 期刊类型引用(9)

    1. 刘伟,吴昺炎,车易泽. 单光纤分布式传感阵列接收响应特性分析. 光纤与电缆及其应用技术. 2023(03): 1-3+28 . 百度学术
    2. 董小卫,田志华,李一强,汪志,韩光耀,唐家财,刘帅. 水平井桥塞分段压裂管外光纤监测技术. 石油钻采工艺. 2023(05): 649-654 . 百度学术
    3. 董小卫,刘帅,汪志,王宁博,刘飞,麻慧博,赵田. 井下光纤微地震监测系统设计及应用. 应用光学. 2022(01): 171-178 . 本站查看
    4. 于淼,孙铭阳,何禹潼,张崇富,郑志丰,孔谦. 相位敏感光时域反射系统低频响应性能优化. 红外与激光工程. 2022(05): 253-261 . 百度学术
    5. 宁卫东,陈金宏,朱涵斌,李剑,孟骞,刘荣芳. 分布式光纤储气库井找漏技术应用. 测井技术. 2022(05): 638-642 . 百度学术
    6. 简丹,刘诚. 可用于现场快速检测的小型化多通道光谱测量系统. 应用光学. 2021(02): 310-316 . 本站查看
    7. 余双勇,衣文索,陈昊玥,韩冬子,王鑫睿. 分布式声传感型特种光纤结构设计. 仪器仪表学报. 2021(03): 59-69 . 百度学术
    8. 黄战华,张晗笑,曹雨生,陈智林,申苜弘. 阵列细丝直径实时快速检测系统设计. 应用光学. 2021(06): 1011-1016 . 本站查看
    9. 高新雨,衣文索,陈刚,巩楠楠,林家锴. 用于地震信号检测的分布式光纤声学传感系统设计. 光通信技术. 2021(12): 14-16 . 百度学术

    其他类型引用(5)

图(12)
计量
  • 文章访问数:  2070
  • HTML全文浏览量:  1295
  • PDF下载量:  74
  • 被引次数: 14
出版历程
  • 收稿日期:  2020-05-12
  • 修回日期:  2020-06-03
  • 网络出版日期:  2020-10-20
  • 刊出日期:  2020-11-14

目录

    /

    返回文章
    返回