Abstract:
In order to reduce the error recognition rate of high repetition pulse laser ranging echo signal and improve the ranging performance, the adjustment technology of high repetition pulse laser ranging echo signal is studied deeply. FPGA was used as the main control chip to generate laser modulation pulses, and square wave signals were selected according to the measured distance of 3.33 μs~33.33 μs, and the switch chip was driven to generate the time wave gate associated with the range, effectively filtering out the interference pulses in the pulse echo. This method improved the automatic gain control link of the conventional pulse laser ranging signal processing system. The test results show that within the dynamic range of 60 dB of the pulse echo signal, interference pulses introduced in the echo signal can be effectively filtered out, greatly reducing the possibility of error caused by the false recognition of interference pulses. This method can be applied to the pulse laser ranging signal processing system, and the ranging accuracy of the system can be increased by 12.6%.