Long-distance vibration measurement based on laser frequency-shifted feedback interferometry
-
摘要: 远距离微弱振动信号探测在机械制造、国防军事等领域具有重要意义。针对远距离非合作目标振动测量不足的问题,基于固体微片激光器移频回馈技术,构建远距离振动测量系统,进一步分析系统灵敏度指标,包括工作距离、入射角度以及非配合物体等参数。实验得到:系统对100 m外目标微弱振动信号高质量采集,以硬纸盒作为测量目标时,频率测量误差小于0.1%,在±60°入射角下信噪比仍接近20 dB。此外支持对奶粉袋、泡沫等多种非合作目标振动测量。系统可灵活用于机械振动测量和远程监视等领域,具有较大工程应用推广价值。Abstract: Signal detection of weak vibration in long-distance is of great significance in the fields of machine manufacturing, national defense, military, and so on. Aiming at overcoming the shortages of traditional measurement systems, a long-distance vibration measurement system was built based on the solid-state microchip laser frequency-shifted feedback technology. The system sensitivity index, including working distance, incident angle, and non-cooperative objects were further analyzed. The experimental results show that the high-quality acquisition of the weak vibration signal at 100 m distance is achieved, the frequency measurement error is less than 0.1% and the signal-to-noise ratio is still close to 20 dB under an incident angle of ±60° with using paper box as the target. In addition, the system can measure vibration of a variety of non-cooperative targets such as milk powder bags, polyfoams and so on. The system can be used flexibly in mechanical vibration measurement, remote monitoring and other fields, showing great promotional value in engineering applications.
-
-
-
[1] ROTHBERG S J, ALLEN M S, CASTELLINI P, et al. An international review of laser Doppler vibrometry: making light work of vibration measurement[J]. Optics and Lasers in Engineering,2017,99(10):11-22.
[2] 陈文建, 高玮, 孙卫平, 等. 弹载共孔径激光微多普勒目标识别系统研究[J]. 应用光学,2018,39(2):174-179. CHEN Wenjian, GAO Wei, SUN Weiping, et al. Research on missile-borne common aperture laser micro-doppler target recognition system[J]. Journal of Applied Optics,2018,39(2):174-179.
[3] ZHU Z G, LI W H, WOLBERG G. Integrating LDV audio and IR video for remote multimodal surveillance[C]//2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05)-Workshops. USA: IEEE, 2005: 10-10.
[4] LYU T, GUO J, ZHANG H Y, et al. Acquirement and enhancement of remote speech signals[J]. Optoelectronics Letters,2017,13(4):275-278. doi: 10.1007/s11801-017-7059-9
[5] 吕韬, 张合勇, 郭劲, 等. 远距离语音的激光相干获取及增强[J]. 光学精密工程,2017,25(3):569-575. doi: 10.3788/OPE.20172503.0569 LYU Tao, ZHANG Heyong, GUO Jin, et al. Acquisition and enhancement of remote voice based on laser coherent method[J]. Optics and Precision Engineering,2017,25(3):569-575. doi: 10.3788/OPE.20172503.0569
[6] ZHANG H Y, LYU T, YAN C H, et al. The novel role of arctangent phase algorithm and voice enhancement techniques in laser hearing[J]. Applied Acoustics,2017,126:136-142. doi: 10.1016/j.apacoust.2017.05.024
[7] 汪啸. 远距离激光振动检测技术的研究[D]. 成都: 电子科技大学, 2018. WANG X. Research on long-distance laser vibration measurement technology[D]. Chengdu: University of Electronic Science and Technology of China, 2018.
[8] KING P G R, STEWARD G J. Metrology with an optical maser[J]. New Scientist,1963,17(180):14.
[9] WU Y, TAN Y D, ZENG Z L, et al. Note: High- performance He-Ne laser feedback interferometer with birefringence feedback cavity scanned by piezoelectric transducer[J]. Review of Scientific Instruments,2013,84(5):056103. doi: 10.1063/1.4804284
[10] ZHANG S H, ZHANG S L, TAN Y D, et al. Self-mixing interferometry with mutual independent orthogonal polarized light[J]. Optics Letters,2016,41(4):844-846. doi: 10.1364/OL.41.000844
[11] ZHU K Y, GUO B, LU Y Y, et al. Single-spot two-dimensional displacement measurement based on self-mixing interferometry[J]. Optica,2017,4(7):729-735. doi: 10.1364/OPTICA.4.000729
[12] OTSUKA K. Self-mixing thin-slice solid-state laser Doppler velocimetry with much less than one feedback photon per Doppler cycle[J]. Optics Letters,2015,40(20):4603-4606. doi: 10.1364/OL.40.004603
[13] WU S, WANG D H, XIANG R, et al. All-fiber configuration laser self-mixing Doppler velocimeter based on distributed feedback fiber laser[J]. Sensors,2016,16(8):1179. doi: 10.3390/s16081179
[14] ZHENG F S, TAN Y D, LIN J, et al. Study of non-contact measurement of the thermal expansion coefficients of materials based on laser feedback interferometry[J]. Review of Scientific Instruments,2015,86(4):043109. doi: 10.1063/1.4917554
[15] TAN Y D, ZHANG S L, ZHANG S, et al. Response of microchip solid-state laser to external frequency-shifted feedback and its applications[J]. Scientific reports,2013,3:2912. doi: 10.1038/srep02912
[16] OTSUKA K. Long-haul self-mixing interference and remote sensing of a distant moving target with a thin-slice solid-state laser[J]. Optics Letters,2014,39(4):1069-1072. doi: 10.1364/OL.39.001069
[17] 吴鹏, 秦水介. 固体微片激光回馈技术在远程振动测量中的研究[J]. 红外与激光工程,2018,47(2):206005-0206005 (6). doi: 10.3788/IRLA201847.0206005 WU Peng, QIN Shuijie. Study of solid-state microchip laser feedback technology in remote vibration measurement[J]. Infrared and Laser Engineering,2018,47(2):206005-0206005 (6). doi: 10.3788/IRLA201847.0206005
[18] TAN Y D, WANG W P, XU C X, et al. Laser confocal feedback tomography and nano-step height measurement[J]. Scientific Reports,2013,3(1):1-7.
[19] ZHU K Y, CHEN H F, Zhang S L, et al. Frequency-shifted optical feedback measurement technologies using a solid-state microchip laser[J]. Applied Sciences,2018,9(1):109-120. doi: 10.3390/app9010109
[20] WANG Haixian, YE Ai. The influence of the coefficient of atmospheric attenuation to the capability of laser ranging[J]. Ship Science and Technology,2007,29(6):116-119.
-
期刊类型引用(3)
1. 张建花,高帅华. 基于影像实时处理的加油对接段辅助对准技术. 应用光学. 2022(02): 234-239 . 本站查看
2. 张建花,陈贝,马晓东. 基于图像的空中加油软管平衡拖曳位置测量方法. 应用光学. 2021(04): 723-727 . 本站查看
3. 符毅,孔星炜,董新民. 基于自适应SRUKF的无人机位姿预测方法. 应用光学. 2019(01): 21-26 . 本站查看
其他类型引用(0)