光学系统纵向色差的仿真及验证

Simulation and verification of longitudinal chromatic aberration for optical system

  • 摘要: 现有的焦距检测方法通常由于检测仪器光源波长与光学系统不完全匹配从而产生纵向色差影响检测结果。针对这一问题,研究光学系统纵向色差的变化规律,并确定在400 nm~1 000 nm波段用于表示其函数关系的Conrady公式和复消色差特性公式。根据光学系统近焦位置的离焦量与位置呈线性关系的特性, 提出使用菲索干涉仪测量5种不同波长的焦距位置,获得单透镜和双胶合镜头的纵向色差曲线。实验结果表明: 在400 nm~1 000 nm波段单色系统和消色差系统的纵向色差的函数关系分别符合Conrady公式和复消色差特性公式,研究结果为焦距的理论计算和精确检测提供了新的思路和参考。

     

    Abstract: In ordinary focal length measurement, the measurement accuracy is usually affected by the longitudinal chromatic aberration because of the different design wavelengths between the optical system and the testing equipment. In order to solve this problem, the variation rule of longitudinal chromatic aberration for optical system was established, and the Conrady formula and apochromatic characteristic formula used to express the functional relationship of longitudinal chromatic aberration in the 400 nm~1 000 nm wavelength were determined. According to the linear relationship characteristic of the optical system between defocus amount of near-focus and position, the focal length position at 5 different wavelengths was measured by using Fizeau interferometer to obtain the longitudinal chromatic aberration curve of the single lens and the double cemented lens. Experimental results show that the longitudinal chromatic aberration function relationship of the monochromatic system complies with the Conrady formula, and the longitudinal chromatic aberration function relationship of the achromatic system matches the achromatic characteristic formula in the 400 nm~1 000 nm wavelength. The research provides new ways and references for the theoretical calculation and accurate detection of focal length.

     

/

返回文章
返回