光学系统纵向色差的仿真及验证

庄锦程, 张齐元, 王芳, 吴鹏, 王浩宇, 王全召, 吴泉英, 韩森

庄锦程, 张齐元, 王芳, 吴鹏, 王浩宇, 王全召, 吴泉英, 韩森. 光学系统纵向色差的仿真及验证[J]. 应用光学, 2020, 41(5): 1037-1046. DOI: 10.5768/JAO202041.0503006
引用本文: 庄锦程, 张齐元, 王芳, 吴鹏, 王浩宇, 王全召, 吴泉英, 韩森. 光学系统纵向色差的仿真及验证[J]. 应用光学, 2020, 41(5): 1037-1046. DOI: 10.5768/JAO202041.0503006
ZHUANG Jincheng, ZHANG Qiyuan, WANG Fang, WU Peng, WANG Haoyu, WANG Quanzhao, WU Quanying, HAN Sen. Simulation and verification of longitudinal chromatic aberration for optical system[J]. Journal of Applied Optics, 2020, 41(5): 1037-1046. DOI: 10.5768/JAO202041.0503006
Citation: ZHUANG Jincheng, ZHANG Qiyuan, WANG Fang, WU Peng, WANG Haoyu, WANG Quanzhao, WU Quanying, HAN Sen. Simulation and verification of longitudinal chromatic aberration for optical system[J]. Journal of Applied Optics, 2020, 41(5): 1037-1046. DOI: 10.5768/JAO202041.0503006

光学系统纵向色差的仿真及验证

基金项目: “十三五”江苏省重点学科建设经费(20168765);国家重点研发计划(2016YFF0101903)
详细信息
    作者简介:

    庄锦程(1995−),男,硕士研究生,主要从事光学检测方面的研究。E-mail:819012855@qq.com

    通讯作者:

    韩森(1961−),男,博士,教授,主要从事干涉测量技术方面的研究。E-mail:senhanemail@126.com

  • 中图分类号: O435.1

Simulation and verification of longitudinal chromatic aberration for optical system

  • 摘要: 现有的焦距检测方法通常由于检测仪器光源波长与光学系统不完全匹配从而产生纵向色差影响检测结果。针对这一问题,研究光学系统纵向色差的变化规律,并确定在400 nm~1 000 nm波段用于表示其函数关系的Conrady公式和复消色差特性公式。根据光学系统近焦位置的离焦量与位置呈线性关系的特性, 提出使用菲索干涉仪测量5种不同波长的焦距位置,获得单透镜和双胶合镜头的纵向色差曲线。实验结果表明: 在400 nm~1 000 nm波段单色系统和消色差系统的纵向色差的函数关系分别符合Conrady公式和复消色差特性公式,研究结果为焦距的理论计算和精确检测提供了新的思路和参考。
    Abstract: In ordinary focal length measurement, the measurement accuracy is usually affected by the longitudinal chromatic aberration because of the different design wavelengths between the optical system and the testing equipment. In order to solve this problem, the variation rule of longitudinal chromatic aberration for optical system was established, and the Conrady formula and apochromatic characteristic formula used to express the functional relationship of longitudinal chromatic aberration in the 400 nm~1 000 nm wavelength were determined. According to the linear relationship characteristic of the optical system between defocus amount of near-focus and position, the focal length position at 5 different wavelengths was measured by using Fizeau interferometer to obtain the longitudinal chromatic aberration curve of the single lens and the double cemented lens. Experimental results show that the longitudinal chromatic aberration function relationship of the monochromatic system complies with the Conrady formula, and the longitudinal chromatic aberration function relationship of the achromatic system matches the achromatic characteristic formula in the 400 nm~1 000 nm wavelength. The research provides new ways and references for the theoretical calculation and accurate detection of focal length.
  • 图  1   测量离焦位置的透射波前确定焦点位置原理

    Figure  1.   Focus determination by measuring transmitted wavefront of defocus position

    图  2   单色系统结构图与色焦移曲线

    Figure  2.   Monochromatic system structure and chromatic focal shift curve

    图  3   单色系统焦距-波长仿真曲线与Conrady公式求解曲线对比

    Figure  3.   Comparison of focal length wavelength simulation curve for monochromatic system with Conrady formula solution curve

    图  4   双高斯系统结构图与色焦移曲线图

    Figure  4.   Double Gauss system structure and chromatic focal shift curve

    图  5   双高斯系统的焦距-波长曲线与Conrady公式求解曲线对比

    Figure  5.   Comparison of focal length-wavelength curve for double Gauss system with Conrady formula solution curve

    图  6   确定复消色差特性公式幂级数系数范围流程图

    Figure  6.   Flow chart of determination of power series range for apochromatic characteristic formula

    图  7   双高斯系统的焦距-波长曲线与复消色差特性公式求解曲线对比

    Figure  7.   Comparison of focal length-wavelength curve for double Gauss system with apochromatic characteristic formula solution curve

    图  8   望远系统结构图和色焦移曲线

    Figure  8.   Telescopic system structure and chromatic focal shift curve

    图  9   望远系统焦距-波长曲线与求解复消色差特性公式曲线对比

    Figure  9.   Comparison of focal length-wavelength curve for telescopic system with apochromatic characteristic formula solution curve

    图  10   实验装置

    Figure  10.   Experimental device

    图  11   使用剪切干涉仪对出射光束准直

    Figure  11.   Collimate optical path by using shear interferometer

    图  12   单色系统的Z3系数与位置曲线图

    Figure  12.   Curve of Z3 coefficient for monochrome system and position

    图  13   Conrady公式求解的单透镜后截距-波长曲线和数据残差图

    Figure  13.   Conrady formula solution curve of single lens and residual curve

    图  14   消色差系统Z3系数与位置的曲线图

    Figure  14.   Curve of Z3 coefficient for achromatic system and position

    图  15   双胶合透镜的求解曲线

    Figure  15.   Solution curve of double cemented lens

    表  1   计算得到各波长焦点位置数据

    Table  1   Focal position data of each wavelength

    波长/nm532561632.8671721
    计算的后截距/mm 8.994 9.214 9.716 9.952 10.226
    下载: 导出CSV

    表  2   计算得到的各波长焦点位置

    Table  2   Focal position of each wavelength

    波长/nm532561632.8671721
    计算的后截距/mm10.55610.54210.55210.57810.638
    下载: 导出CSV
  • [1] 粟琼. 用平行光管法测薄透镜焦距[J]. 黔东南民族师范高等专科学校学报,2006,24(6):34-35.

    SU Qiong. Measuring the focal length of thin lens by collimator method[J]. Journal of Southeast Guizhou National Teachers College,2006,24(6):34-35.

    [2] 李晓磊. 基于平行光管法的薄凸透镜焦距测量[J]. 应用光学,2019,40(5):859-862. doi: 10.5768/JAO201940.0503004

    LI Xiaolei. Focal length measurement for thin convex lens based on parallel tube method[J]. Journal of Applied Optics,2019,40(5):859-862. doi: 10.5768/JAO201940.0503004

    [3] 许巧平. 入射光对透镜焦距影响的实验探究[J]. 中小企业管理与科技,2012(3):321. doi: 10.3969/j.issn.1673-1069.2012.03.288

    XU Qiaoping. Experimental study on the influence of incident light on lens focal length[J]. Management and Technology of Small and Medium Sized Enterprises,2012(3):321. doi: 10.3969/j.issn.1673-1069.2012.03.288

    [4] 钱嘉欣. 基于单色仪探究凸透镜焦距和入射光波长的关系[J]. 广西物理,2017,38(1):9-13.

    QIAN Jiaxin. Relationship between convex lens focal length and incident light wavelength based on monochromator[J]. Guangxi Physics,2017,38(1):9-13.

    [5] 陈竺益, 方针. 基于色像差特性的图像篡改检测[J]. 应用科学学报,2015,33(6):604-614. doi: 10.3969/j.issn.0255-8297.2015.06.004

    CHEN Zhuyi, FANG Zhen. Detection of digital image forgery based on chromatic aberration[J]. Journal of Applied Sciences,2015,33(6):604-614. doi: 10.3969/j.issn.0255-8297.2015.06.004

    [6] 刘智颖, 李曙琦, 黄蕴涵, 等. 透射式内调焦宽光谱光学系统的设计与分析[J]. 光子学报,2020,49(3):98-108.

    LIU Zhiying, LI Shuqi, HUANG Yunhang, et al. Design and analysis of the transmitted inner focusing wide spectrum optical system[J]. Acta Photonica Sinica,2020,49(3):98-108.

    [7] 于东, 程庆庆. 太赫兹宽带消色差偏折器设计[J]. 光学仪器,2019,41(6):54-59.

    YU Dong, CHENG Qingqing. Terahertz broadband achromatic deflector design[J]. Optical Instruments,2019,41(6):54-59.

    [8] 冉竹玉. 纵向色差实验的改进[J]. 重庆师范学院学报(自然科学版),1988(1):38.

    RAN Zhuyu. Improvement of longitudinal chromatic aberration experiment[J]. Journal of Chongqing Normal University(Natural Science),1988(1):38.

    [9] 王申浩, 陶宗明, 杨蕾, 张辉. 基于三种色散公式的三棱镜色散实验研究[J]. 大学物理实验,2017,30(3):58-62.

    WANG Shenhao,TAO Zongming,YANG Lei, et al. Study on the triple prism dispersion experiment based on the three kinds of dispersion formula[J]. Physical Experiment of College,2017,30(3):58-62.

    [10]

    SEONG K, GREIVENKAMP J E. Chromatic aberration measurement for transmission interferometric testing[J]. Applied Optics,2008,47(35):6508. doi: 10.1364/AO.47.006508

    [11] 张齐元, 韩森, 唐寿鸿, 等. 透射波前Zernike系数与波长的函数关系研究[J]. 光学学报,2018,38(2):0212002-1-8.

    ZHANG Qiyuan, HAN Sen, TANG Shouhong, et al. Study on functional relationship between transmitted wavefront Zernike coefficients and wavelengths[J]. Acta Optica Sinica,2018,38(2):0212002-1-8.

    [12]

    ZHANG Q Y, WANG H Y, WU P, et al. Estimating transmitted wavefronts in a broad bandwidth based on Zernike coefficients[J]. Journal of Optics,2019,21(9):095601. doi: 10.1088/2040-8986/ab30dc

    [13]

    ZHUANG J C, ZHANG Q Y, WU P, et al. Chromatic focal shift of optical system expressed by related wavelength formulas[J]. SPIE: Optical Modeling and System Alignment,2019,11103:111030W.

    [14]

    BRUNING J H, HERRIOTT D R, GALLAGHER J E, et al. Digital wavefront measuring interferometer for testing optical surfaces and lenses[J]. Applied Optics,1974,13(11):2693-2703. doi: 10.1364/AO.13.002693

    [15]

    KUMAR P Y, CHATTERJEE S. Technique for the focal-length measurement of positive lenses using Fizeau interferometry[J]. Applied Optics,2009,48(4):730-736. doi: 10.1364/AO.48.000730

    [16]

    YANG G Q, MIAO L, ZHANG X, et al. High-accuracy measurement of the focal length and distortion of optical systems based on interferometry[J]. Applied Optics,2018,57(18):5217-5223. doi: 10.1364/AO.57.005217

    [17] 张齐元, 韩森, 唐寿鸿, 等. 离焦位置任意波长透射波前Zernike系数算法研究[J]. 光子学报,2018,47(10):107-114.

    ZHANG Qiyuan, HAN Sen, TANG Shouhong, et al. Estimation of Zernike coefficients for any wavelength transmitted wavefront at defocus position[J]. Acta Photonica Sinica,2018,47(10):107-114.

    [18] 穆文娟. 激光自动对焦中离焦量的探测与计算方法[J]. 光学仪器,2019,41(1):14-17.

    MU Wenjuan. Detection and calculation method of defocus value in the auto-focus using laser[J]. Optical Instruments,2019,41(1):14-17.

    [19] 苏州维纳仪器有限责任公司. 检测任意波长光学系统离焦位置透射波前的方法: 中国, CN108225743A[P]. 2018-06-29.

    Suzhou Weiner Instrument Co., Ltd.A method to detect the transmitted wavefront of optical system with arbitrary wavelength at defocusing position: China, CN108225743A[P]. 2018-06-29.

  • 期刊类型引用(2)

    1. 王伟,周刚. 一种基于改进的巴氏系数的协同过滤推荐算法. 计算机应用研究. 2020(12): 3569-3571 . 百度学术
    2. 范舜奕,管桦,侯志强,余旺盛,戴铂. 利用选择性模型不定时更新的视觉跟踪算法. 中国图象图形学报. 2016(06): 745-755 . 百度学术

    其他类型引用(1)

图(18)  /  表(2)
计量
  • 文章访问数:  1996
  • HTML全文浏览量:  639
  • PDF下载量:  54
  • 被引次数: 3
出版历程
  • 收稿日期:  2020-02-26
  • 修回日期:  2020-04-18
  • 网络出版日期:  2020-09-07
  • 刊出日期:  2020-09-14

目录

    /

    返回文章
    返回