太赫兹光谱技术在四氢双环戊二烯检测中的应用

吴斌, 杨延召, 应承平, 刘红元, 张鹏, 王恒飞

吴斌, 杨延召, 应承平, 刘红元, 张鹏, 王恒飞. 太赫兹光谱技术在四氢双环戊二烯检测中的应用[J]. 应用光学, 2020, 41(4): 786-790. DOI: 10.5768/JAO202041.0409903
引用本文: 吴斌, 杨延召, 应承平, 刘红元, 张鹏, 王恒飞. 太赫兹光谱技术在四氢双环戊二烯检测中的应用[J]. 应用光学, 2020, 41(4): 786-790. DOI: 10.5768/JAO202041.0409903
WU Bin, YANG Yanzhao, YING Chengping, LIU Hongyuan, ZHANG Peng, WANG Hengfei. Application of terahertz spectroscopy in THDCPD isomers detection[J]. Journal of Applied Optics, 2020, 41(4): 786-790. DOI: 10.5768/JAO202041.0409903
Citation: WU Bin, YANG Yanzhao, YING Chengping, LIU Hongyuan, ZHANG Peng, WANG Hengfei. Application of terahertz spectroscopy in THDCPD isomers detection[J]. Journal of Applied Optics, 2020, 41(4): 786-790. DOI: 10.5768/JAO202041.0409903

太赫兹光谱技术在四氢双环戊二烯检测中的应用

基金项目: 装备预研基金资助项目(6140003010102);国防技术基础资助项目
详细信息
    作者简介:

    吴斌(1984−),男,博士,主要从事太赫兹和红外测试校准技术方面的研究。E-mail:wubinw@126.com

  • 中图分类号: TN206;O433

Application of terahertz spectroscopy in THDCPD isomers detection

  • 摘要: 研究了太赫兹光谱技术在鉴别含能材料同分异构体中的应用。首先研制了适于特定工程应用的太赫兹时域光谱仪样机,并经过振动冲击、高低温试验验证了样机的环境适应性,表明该款样机完全可以在非实验室环境下稳定可靠地工作。利用一氧化碳标准气体验证了样机测量光谱的正确性,并同时实现了对样机测量频率的校准;利用校准后的光谱仪测量了四氢双环戊二烯的两种同分异构体endo-THDCPD和exo-THDCPD的太赫兹光谱,测量结果显示两种不同构型材料的太赫兹光谱存在显著差异,endo-THDCPD的太赫兹光谱在0.23 THz和1.70 THz处呈现出明显的特征吸收,exo-THDCPD的2个最明显的特征吸收峰则位于1.41 THz和1.74 THz。该结果表明:运用太赫兹光谱技术可有效区分这两种分子结构仅存在微弱差异的材料,对太赫兹光谱在含能材料研究领域的应用具有参考意义。
    Abstract: The application of terahertz spectroscopy in the identification of energetic material isomers was studied. Firstly, a terahertz time-domain spectrometer for specific engineering application was developed, and its environmental adaptability was verified by vibratory impulse and temperature variation experiments, which indicated the spectrometer could work stably and reliably in a non-laboratory environment. Secondly, the validity of spectrum measurement for the spectrometer was verified by carbon monoxide standard gas, and the calibration of measuring frequency was realized at the same time. The terahertz spectrum of two isomers endo-THDCPD and exo-THDCPD of THDCPD were measured by the calibrated spectrometer. The results show that there are significant differences between terahertz spectrum of two isomers. The terahertz spectrum of endo-THDCPD presents the obvious characteristic absorption at 0.23 THz and 1.70 THz, while the 2 most obvious characteristic absorption peaks of exo-THDCPD are at 1.28 THz and 1.60 THz. Therefore, the use of terahertz spectroscopy can effectively distinguish the two kinds of isomers with only slight difference, which has reference significance for the application of terahertz spectroscopy in the research field of energetic material.
  • 图  1   太赫兹时域光谱仪光路

    Figure  1.   Optical path of terahertz time-domain spectrometer

    图  2   环境空气的时、频域光谱

    Figure  2.   Time-domain and frequency-domain spectrum of ambient air

    图  3   一氧化碳气体的太赫兹吸收光谱测量结果

    Figure  3.   Terahertz absorption spectrum measurement results of carbon monoxide gas

    图  4   endo-THDCPD和exo-THDCPD的太赫兹吸收光谱

    Figure  4.   Terahertz absorption spectrum of endo-THDCPD and exo-THDCPD

    表  1   CO分子吸收频率实验值与标准值

    Table  1   Experimental and standard data of CO molecular absorption frequency

    J ′-J实验数据/THz标准数据/THz误差/THz
    5-4 0.548 014 0.576 267 −0.028 253
    6-5 0.659 673 0.691 473 −0.031 800
    7-6 0.768 394 0.806 651 −0.038 257
    8-7 0.878 585 0.921 799 −0.043 214
    9-8 0.987 306 1.036 912 −0.049 606
    10-9 1.098 966 1.151 985 −0.053 019
    11-10 1.207 687 1.267 014 −0.059 327
    12-11 1.317 877 1.381 995 −0.064 118
    13-12 1.426 598 1.496 922 −0.070 324
    14-13 1.535 32 1.611793 −0.076 473
    15-14 1.644 041 1.726 602 −0.082 561
    15-16 1.754 231 1.841 345 −0.087 114
    16-17 1.865 891 1.956 018 −0.090 127
    下载: 导出CSV
  • [1] 吴磊, 阴万宏, 俞兵, 等. 飞秒激光脉冲宽度和脉冲波形测试技术[J]. 应用光学,2019,40(2):291-299.

    WU Lei, YIN Wanhong, YU Bing, et al. Research on femto-second laser pulse width and pulse waveform measurement technology[J]. Journal of Applied Optics,2019,40(2):291-299.

    [2]

    RANA G, BHATTACHARYA A, GUPTA A, et al. A polarization-resolved study of nanopatterned photoconductive antenna for enhanced terahertz emission[J]. Terahertz Science and Technology, IEEE Transactions on,2019,9(2):193-199. doi: 10.1109/TTHZ.2019.2891022

    [3] 张宏飞, 苏波, 何敬锁, 等. 超快太赫兹时域光谱系统[J]. 应用光学,2019,40(2):229-232.

    ZHANG Hongfei, SU Bo, HE Jingsuo, et al. Ultra-fast terahertz time domain spectroscopy system[J]. Journal of Applied Optics,2019,40(2):229-232.

    [4]

    MAMRASHEV A A, MINAKOV F A, MAXIMOV L V, et al. Terahertz time-domain spectrometer with precision delay line encoder[J]. European Physical Journal Conferences,2018,195(6):05007.

    [5]

    TOFANI S, ZOGRAFOPOULOS D C, MISSORI M, et al. High-resolution binary zone plate in double-sided configuration for terahertz radiation focusing[J]. IEEE Photonics Technology Letters,2019,31(2):117-120. doi: 10.1109/LPT.2018.2882413

    [6]

    CHEN H, CHEN X, MA S, et al. Quantify glucose level in freshly diabetic's blood by terahertz time-domain spectroscopy[J]. Journal of Infrared, Millimeter, and Terahertz Waves,2018,39(4):399-408. doi: 10.1007/s10762-017-0462-2

    [7]

    ABDUL-MUNAIM A M, MENDEZ A M, PREU S, et al. Discriminating gasoline fuel contamination in engine oil by terahertz time-domain spectroscopy[J]. Tribology International,2018,119:123-130. doi: 10.1016/j.triboint.2017.10.026

    [8]

    MACKENZIE D M A, WHELAN P R, PETER B, et al. Quality assessment of terahertz time-domain spectroscopy transmission and reflection modes for graphene conductivity mapping[J]. Optics Express,2018,26(7):9220. doi: 10.1364/OE.26.009220

    [9]

    SHI W, DONG C G, HOU L, et al. Investigation of aging characteristics in explosive using terahertz time-domain spectroscopy[J]. International Journal of Modern Physics B,2019,33(24):1950272. doi: 10.1142/S0217979219502722

    [10]

    MA Y Y, HUANG H C, HAO S B, et al. Investigation of copper sulfate pentahydrate dehydration by terahertz time-domain spectroscopy[J]. Chinese Physics,2019,28(6):119-123.

    [11]

    BERNIER M, GARET F, KATO E J, et al. Comparative study of material parameter extraction using terahertz time-domain spectroscopy in transmission and in reflection[J]. Journal of Infrared, Millimeter, and Terahertz Waves,2018,39(4):349-366. doi: 10.1007/s10762-018-0463-9

    [12]

    XIONG Zhongqiang, MI Zhentao, ZHANG Xiangwen. Solvent effect in isomerization of tetrahydrodicyclopentadiene[J]. Journal of Chemical Engineering of Chinese Universities[J]. 2005, 19(2): 218-222.

    [13]

    KHAN N, ABHYANKAR A C, NANDI T, et al. Nickel nanocatalyst supported single-step hydroconversion of dicyclopentadiene (DCPD) into high energy-density fuel, exo-tetrahydrodicyclopentadiene (exo-THDCPD)[J]. Journal of Nanoscience and Nanotechnology,2019,19(12):7982-7992. doi: 10.1166/jnn.2019.16870

    [14]

    WU Bin, WANG Hengfei, CHEN Kunfeng, et al. Calibration of terahertz spectrum by using carbon monoxide: 2016 URSI Asia-Pacific Radio Science Conference. Seoul, Korea, August 21-25, 2016[C]. USA: IEEE, 2016.

    [15]

    ROTHMANA L S, GORDON L E, BABIKOV Y, et al. The HITRAN2012 molecular spectroscopic database[J]. Journal of Quantitative Spectroscopy and Radiative Transfer,2013,130:4-50. doi: 10.1016/j.jqsrt.2013.07.002

  • 期刊类型引用(1)

    1. 刘尚旺, 郜刘阳, 王博. 联合双边滤波器和小波阈值收缩去噪算法研究. 国土资源遥感. 2018(02): 114-124 . 百度学术

    其他类型引用(1)

图(4)  /  表(1)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 2
出版历程
  • 收稿日期:  2020-03-29
  • 修回日期:  2020-05-09
  • 网络出版日期:  2020-07-14
  • 刊出日期:  2020-06-30

目录

    /

    返回文章
    返回