采用分区法生成稀疏谱湍流相位屏

Generation of sparse spectrum turbulence phase screen by partition allocation method

  • 摘要: 为了更好地研究光束在大气湍流中的传播特性,提出了基于稀疏谱模型的湍流相位屏模拟方法,对生成相位屏的灰度图、结构函数和光束漂移量进行了研究分析。首先采用数学方法分析光波的方向、大小和振幅,并由此得到稀疏谱相位屏;然后分别在不同相干半径下,与功率谱反演法生成的相位屏灰度图进行对比,并分析稀疏谱模型下的结构函数和光斑位置拟合度。仿真和实验测试结果表明,实验结构函数的平均误差为6.1%,该模拟方法下的相位屏细节信息更为丰富,大气湍流光斑质心的均方根误差为1.013×10−7 m,具有精度高、运行速度快、模拟周期长等优点,能够较好地模拟真实大气湍流。

     

    Abstract: In order to better study the propagation characteristics of the beam in atmospheric turbulence, a simulation method of the turbulence phase screen based on the sparse spectrum model was proposed, and the gray image, structure function and beam drifting distance of the generated phase screen were analyzed. Firstly, the mathematical method was used to analyze the direction, size and amplitude of the light wave, and the sparse spectrum phase screen was obtained. Then, under the different coherence radius, it was compared with the phase screen gray image generated by the power spectrum inversion method, and the fitting degree of the structure function and the spot position under the sparse spectrum model was analyzed. The simulation and experimental test results show that the average error of the experimental structure function is 6.1%. The phase screen detail information is more abundant under the simulation method, and the root mean square error of the atmospheric turbulence spot centroid is 1.013×10-7 m, which has the advantages of high precision, fast running speed, long simulative period, etc., and can better simulate the real atmospheric turbulence.

     

/

返回文章
返回