采用分区法生成稀疏谱湍流相位屏

张小琪, 倪小龙, 刘智, 丛明慧, 张洁

张小琪, 倪小龙, 刘智, 丛明慧, 张洁. 采用分区法生成稀疏谱湍流相位屏[J]. 应用光学, 2020, 41(3): 523-530. DOI: 10.5768/JAO202041.0302006
引用本文: 张小琪, 倪小龙, 刘智, 丛明慧, 张洁. 采用分区法生成稀疏谱湍流相位屏[J]. 应用光学, 2020, 41(3): 523-530. DOI: 10.5768/JAO202041.0302006
ZHANG Xiaoqi, NI Xiaolong, LIU Zhi, CONG Minghui, ZHANG Jie. Generation of sparse spectrum turbulence phase screen by partition allocation method[J]. Journal of Applied Optics, 2020, 41(3): 523-530. DOI: 10.5768/JAO202041.0302006
Citation: ZHANG Xiaoqi, NI Xiaolong, LIU Zhi, CONG Minghui, ZHANG Jie. Generation of sparse spectrum turbulence phase screen by partition allocation method[J]. Journal of Applied Optics, 2020, 41(3): 523-530. DOI: 10.5768/JAO202041.0302006

采用分区法生成稀疏谱湍流相位屏

基金项目: 吉林省科技发展计划项目(20170521001HJ)
详细信息
    作者简介:

    张小琪(1994−),女,硕士研究生,主要从事无线光通信方面的研究。E-mail:1070075402@qq.com

  • 中图分类号: TN929

Generation of sparse spectrum turbulence phase screen by partition allocation method

  • 摘要: 为了更好地研究光束在大气湍流中的传播特性,提出了基于稀疏谱模型的湍流相位屏模拟方法,对生成相位屏的灰度图、结构函数和光束漂移量进行了研究分析。首先采用数学方法分析光波的方向、大小和振幅,并由此得到稀疏谱相位屏;然后分别在不同相干半径下,与功率谱反演法生成的相位屏灰度图进行对比,并分析稀疏谱模型下的结构函数和光斑位置拟合度。仿真和实验测试结果表明,实验结构函数的平均误差为6.1%,该模拟方法下的相位屏细节信息更为丰富,大气湍流光斑质心的均方根误差为1.013×10−7 m,具有精度高、运行速度快、模拟周期长等优点,能够较好地模拟真实大气湍流。
    Abstract: In order to better study the propagation characteristics of the beam in atmospheric turbulence, a simulation method of the turbulence phase screen based on the sparse spectrum model was proposed, and the gray image, structure function and beam drifting distance of the generated phase screen were analyzed. Firstly, the mathematical method was used to analyze the direction, size and amplitude of the light wave, and the sparse spectrum phase screen was obtained. Then, under the different coherence radius, it was compared with the phase screen gray image generated by the power spectrum inversion method, and the fitting degree of the structure function and the spot position under the sparse spectrum model was analyzed. The simulation and experimental test results show that the average error of the experimental structure function is 6.1%. The phase screen detail information is more abundant under the simulation method, and the root mean square error of the atmospheric turbulence spot centroid is 1.013×10-7 m, which has the advantages of high precision, fast running speed, long simulative period, etc., and can better simulate the real atmospheric turbulence.
  • 图  1   幂律函数和归一化结构函数

    Figure  1.   Power law function and normalized structure function

    图  2   基于稀疏谱的大气湍流模拟装置

    Figure  2.   Atmospheric turbulence simulation device based on sparse spectrum

    图  3   传统子相位屏截取示意图

    Figure  3.   Schematic diagram of traditional sub-phase screen capture

    图  4   长带形湍流相位屏截取子屏示意图

    Figure  4.   Schematic diagram of sub-screen capture of long strip turbulence phase screen

    图  5   稀疏谱大气湍流相位屏

    Figure  5.   Sparse spectrum atmospheric turbulence phase screen

    图  6   r0=0.01 m时大气湍流模拟相位屏

    Figure  6.   Atmospheric turbulence simulation phase screen when r0=0.01 m

    图  7   r0=0.05 m时大气湍流模拟相位屏

    Figure  7.   Atmospheric turbulence simulation phase screen when r0=0.05 m

    图  8   r0=0.1 m时,大气湍流模拟相位屏

    Figure  8.   Atmospheric turbulence simulation phase screen when r0=0.1 m

    图  9   结构函数对比图

    Figure  9.   Comparison chart of structure function

    图  10   不同相干长度下的光束漂移量

    Figure  10.   Beam drifting distance at different coherence lengths

  • [1] 李玉杰, 朱文越, 饶瑞中. 非Kolmogorov大气湍流随机相位屏模拟[J]. 红外与激光工程,2016,45(12):169-176.

    LI Yujie, ZHU Wenyue, RAO Ruizhong. Non-Kolmogorov atmospheric turbulence random phase screen simulation[J]. Infrared and Laser Engineering,2016,45(12):169-176.

    [2] 段锦, 王曦泽, 景文博, 等. 基于Zernike多项式的大气湍流相位屏的数值模拟[J]. 长春理工大学学报(自然科学版),2010,33(3):63-64, 62.

    DUAN Jin, WANG Xize, JING Wenbo. etal Numerical simulation of atmospheric turbulence phase screen based on Zernike polynomial[J]. Journal of Changchun University of Science and Technology (Natural Science Edition),2010,33(3):63-64, 62.

    [3] 齐冀. 基于LC-SLM的高光束质量变倍率激光扩束技术研究[D]. 长春: 长春理工大学, 2018.

    QI Ji. Research on high beam quality variable magnification laser beam expanding technology based on LC-SLM[D]. Changchun: Changchun University of Science and Technology, 2018.

    [4] 蔡冬梅, 遆培培, 贾鹏, 等. 非均匀采样的功率谱反演大气湍流相位屏的快速模拟[J]. 物理学报,2015,64(22):252-258.

    CAI Dongmei, TI Peipei, JIA Peng, et al. Fast simulation of phase screen for atmospheric turbulence inversion based on non-uniform sampling power spectrum[J]. Acta Physica Sinica,2015,64(22):252-258.

    [5]

    CHARNOTSKII M. Sparse spectrum model of the sea surface[C]//Proceedings of ASME Conference on ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering. [S.l]: ASME, 2011: 773-778.

    [6] 李波, 王挺峰, 王弟男, 等. 激光大气传输湍流扰动仿真技术[J]. 中国光学,2012,5(3):289-295.

    LI Bo, WANG Tingfeng, WANG Dinan, et al. Turbulent disturbance simulation technology of laser atmospheric transmission[J]. China Optics,2012,5(3):289-295.

    [7] 朱玲. 自由空间光通信中的大气湍流模拟研究[D]. 北京: 北京邮电大学, 2016.

    ZHU Ling. Research on atmospheric turbulence simulation in free space optical communication[D]. Beijing:Beijing University of Posts and Telecommunications, 2016.

    [8] 亢立明, 姚海峰, 陈纯毅, 等. 基于大气湍流光闪烁的真随机数提取研究[J]. 应用光学,2019,40(3):517-524. doi: 10.5768/JAO201940.0308003

    KANG Liming, YAO Haifeng, CHEN Chunyi, et al. Research on extraction of true random numbers based on atmospheric turbulent light flicker[J]. Journal of Applied Optics,2019,40(3):517-524. doi: 10.5768/JAO201940.0308003

    [9] 艾勇, 段梦云, 徐洁洁, 等. LC-SLM激光大气传输湍流模拟及通信实验分析[J]. 红外与激光工程,2015,44(10):3103-3109. doi: 10.3969/j.issn.1007-2276.2015.10.040

    AI Yong, DUAN Mengyun, XU Jiejie, et al. Turbulence simulation and communication experiment analysis of LC-SLM laser atmospheric transmission[J]. Infrared and Laser Engineering,2015,44(10):3103-3109. doi: 10.3969/j.issn.1007-2276.2015.10.040

    [10] 李盾, 宁禹, 吴武明, 等. 旋转相位屏的动态大气湍流数值模拟和验证方法[J]. 红外与激光工程,2017,46(12):124-130.

    LI Dun, NING Yu, WU Wuming, et al. Numerical simulation and verification method of dynamic atmospheric turbulence with rotating phase screen[J]. Infrared and Laser Engineering,2017,46(12):124-130.

    [11] 丁晓娜, 蔡冬梅, 赵圆, 等. 分形法模拟大气湍流相位屏性能分析[J]. 中国激光,2013,40(s1):s113002.

    DING Xiaona, CAI Dongmei, ZHAO Yuan, et al. Performance analysis of fractal method to simulate atmospheric turbulence phase screen[J]. Chinese Journal of Laser,2013,40(s1):s113002.

    [12] 李玲玲, 赵恒凯. 低频补偿功率谱反演法模拟大气湍流相位屏[J]. 工业控制计算机,2019,32(8):128-130. doi: 10.3969/j.issn.1001-182X.2019.08.050

    LI Lingling, ZHAO Hengkai. Low-frequency compensation power spectrum inversion method to simulate atmospheric turbulence phase screen[J]. Industrial Control Computer,2019,32(8):128-130. doi: 10.3969/j.issn.1001-182X.2019.08.050

    [13] 杨海波, 许宏. 基于功率谱反演法的大气湍流相位屏数值模拟[J]. 光电技术应用,2019,34(4):73-76. doi: 10.3969/j.issn.1673-1255.2019.04.016

    YANG Haibo, XU Hong. Numerical simulation of atmospheric turbulence phase screen based on power spectrum inversion[J]. Optoelectronic Technology Applications,2019,34(4):73-76. doi: 10.3969/j.issn.1673-1255.2019.04.016

    [14] 韩星星, 赵丽华. 非均匀步长分步傅里叶算法的改进[J]. 激光与红外,2018,48(6):691-696. doi: 10.3969/j.issn.1001-5078.2018.06.005

    HAN Xingxing, ZHAO Lihua. Improvement of non-uniform step size four-step Fourier algorithm[J]. Laser and Infrared,2018,48(6):691-696. doi: 10.3969/j.issn.1001-5078.2018.06.005

    [15] 林远见. 移动平台光通信链路的相位屏模拟方法和实验研究[D]. 西安: 电子科技大学, 2018.

    LIN Yuanjian. Phase screen simulation method and experimental research of mobile platform optical communication link[D]. Xi’an: Xidian University, 2018.

  • 期刊类型引用(2)

    1. 王伟,周刚. 一种基于改进的巴氏系数的协同过滤推荐算法. 计算机应用研究. 2020(12): 3569-3571 . 百度学术
    2. 范舜奕,管桦,侯志强,余旺盛,戴铂. 利用选择性模型不定时更新的视觉跟踪算法. 中国图象图形学报. 2016(06): 745-755 . 百度学术

    其他类型引用(1)

图(11)
计量
  • 文章访问数:  805
  • HTML全文浏览量:  278
  • PDF下载量:  32
  • 被引次数: 3
出版历程
  • 收稿日期:  2019-12-29
  • 修回日期:  2020-02-11
  • 网络出版日期:  2020-05-29
  • 刊出日期:  2020-04-30

目录

    /

    返回文章
    返回