Study on tomographic computer generated cylindrical holography
-
摘要: 研究了三维物体圆柱型层析计算全息技术:分别将不同深度三维物体的圆柱截面与对应的点扩展函数进行卷积后叠加获得位于全息面的物光场分布,并与参考光干涉获得计算全息图,再现该全息图可对原物体实现360°观测。首先建立三维物体圆柱型层析计算全息模型,推导系统点扩展函数与不同方向采样间隔所需满足的条件;然后通过理论与实验分析了物体不同圆柱截面半径、波长对空间频率和系统传递函数的影响,采用峰值信噪比和均方误差来评价再现图质量;最后对三维地球模型采用圆柱型层析计算全息编码,再现了不同观察角度与深度的信息。仿真结果表明,该方法对于一般三维物体360°全视场显示具有较高的应用价值。Abstract: The method for tomographic computer generated cylindrical holography of three-dimensional object was researched: the diffracted wavefront on the holographic surface was the superposition of convolution between the cylindrical cross sections of three-dimensional object with different depths and the corresponding point spread functions, and the computer generated hologram could be obtained by recording the interference patterns from the diffracted object wavefront and the reference. The 360° view of the object could be observed from the reconstructed holograms. Firstly, the tomographic computer generated cylindrical holography model of three-dimensional object was built, and the conditions of system point spread function and sampling interval in different directions were derived. Secondly, the impact on the spatial frequency and the system transfer function by the radii and the wavelengths of different cylindrical cross sections was analyzed from both theory and experiments, and the peak signal to noise ratio as well as the mean square error were adopted to evaluate the quality of the reconstructed holograms. Finally, the tomographic computer generated cylindrical holography was used to encode the three-dimensional earth model, which represented the information of different observation angles and depths. The simulation results show that the proposed method has wide applications for 360° full field display of the ordinary three-dimensional objects.
-
-
表 1 物圆柱面半径2 mm、4 mm、6 mm、8 mm和10 mm时再现像与原图的PSNR和MSE
Table 1 PSNR and MSE while radii of cylindrical cross sections are 2 mm、4 mm、6 mm、8 mm and 10 mm
物半径/mm PSNR/dB MSE 2 28.968 7 82.453 1 4 30.257 1 61.287 7 6 31.926 5 41.728 3 8 32.491 3 36.639 2 10 32.982 1 32.724 3 表 2 波长300 µm、350 µm、400 µm、450 µm和500 µm时再现像与原图的PSNR和MSE
Table 2 PSNR and MSE while wavelengths are 300 µm、350 µm、400 µm、450 µm and 500 µm
波长/μm PSNR/dB MSE 300 32.982 1 32.724 3 350 32.587 7 35.835 6 400 31.843 2 42.536 0 450 30.992 8 51.737 1 500 30.357 0 59.893 5 -
[1] SANDO Y, ITOH M, YATAGAI T. Holographic three-dimensional display synthesized from three-dimensional Fourier spectra of real existing objects[J]. Optics Letters,2003,28(24):2518-2520. doi: 10.1364/OL.28.002518
[2] PARK J H, KIM M S, BAASANTSEREN G, et al. Fresnel and Fourier hologram generation using orthographic projection images[J]. Optics Express,2009,17(8):6320-6334. doi: 10.1364/OE.17.006320
[3] WAKUNAMI K, YAMAGUCHI M. Calculation for computer generated hologram using ray-sampling plane[J]. Optics Express,2011,19(10):9086-9101. doi: 10.1364/OE.19.009086
[4] 简献忠, 周海, 杨鑫, 等. 三维点云物体频谱获取方法[J]. 光子学报,2014,43(5):88-93. JIAN Xianzhong, ZHOU Hai, YANG Xin, et al. A method for spectrum extraction of 3D object with object points[J]. Acta Photonica Sinica,2014,43(5):88-93.
[5] 闫高宾, 于佳, 刘惠萍, 等. 基于计算全息的全视差合成全息研究[J]. 红外与激光工程,2015,44(8):2467-2471. doi: 10.3969/j.issn.1007-2276.2015.08.038 YAN Gaobin, YU Jia, LIU Huiping, et al. Full parallax stereo holography research based on CGH[J]. Infrared and Laser Engineering,2015,44(8):2467-2471. doi: 10.3969/j.issn.1007-2276.2015.08.038
[6] 肖波, 郑华东, 刘柯健, 等. 层析法计算三维物体全息图的并行加速研究[J]. 应用光学,2019,40(4):620-626. doi: 10.5768/JAO201940.0402006 XIAO Bo, ZHENG Huadong, LIU Kejian, et al. Hologram speed-up computation of slice-based 3D objects using GPU parallel computing method[J]. Journal of Applied Optics,2019,40(4):620-626. doi: 10.5768/JAO201940.0402006
[7] SANDO Y, ITOH M, YATAGAI T. Fast calculation method for cylindrical computer generated holograms[J]. Optics Express,2005,13(5):1418-1423. doi: 10.1364/OPEX.13.001418
[8] SANDO Y, BARADA D, JACKIN B J, et al. Fast calculation method for computergenerated cylindrical holograms based on the three-dimensional fourier spectrum[J]. Optics Letters,2013,38(23):5172-5175. doi: 10.1364/OL.38.005172
[9] KASHIWAGI A, SAKAMOTO Y. A fast calculation method of cylindrical computer-generated holograms which perform imagereconstruction of volume data[J]. Optical Society of America,2007:DWB7.
[10] JACKIN B J, YATAGAI T. Fast calculation method for computer-generated cylindrical hologram based on wave propagation in spectral domain[J]. Optics Express,2010,18(25):25546-25555. doi: 10.1364/OE.18.025546
[11] JACKIN B J, YATAGAI T. Fast calculation of spherical computer generated hologram using spherical wave spectrum method[J]. Optics Express,2013,21(1):935-948. doi: 10.1364/OE.21.000935
[12] ZHAO Y, PIAO M L, LI G, et al. Fast calculation method of computer-generated cylindrical hologram using wave-front recording surface[J]. Optics Letters,2015,40(13):3017-3020. doi: 10.1364/OL.40.003017
[13] WANG J, WANG Q H, HU Y H. Fast diffraction calculation of cylindrical computer generated hologram based on outside-in propagation model[J]. Optics Communications,2017,403:296-303. doi: 10.1016/j.optcom.2017.07.045
[14] GONCHARSKY A, DURLEVICH S. Cylindrical computer-generated hologram for displaying 3D images[J]. Optics Express,2018,26(17):22160-22167. doi: 10.1364/OE.26.022160
[15] CHANG C L, QI Y J, XIA J, et al. Numerical study of color holographic display from single computer-generated cylindrical hologram by radial-division method[J]. Optics Communications,2019,431:101-108. doi: 10.1016/j.optcom.2018.09.021
-
期刊类型引用(4)
1. 李涵阳,胡耀升. 某机载高速影像测量系统精度分析方法及验证. 电光与控制. 2021(05): 94-97 . 百度学术
2. 胡丙华,晏晖. 地面最小操纵速度试飞光电测试方法. 应用光学. 2021(06): 1072-1079 . 本站查看
3. 张维,陈报章,赵亮. 可视化遥感图像坐标位置距离远程测量仿真. 计算机仿真. 2020(04): 424-427+450 . 百度学术
4. 张建花,张杰. 基于多视场拼接的飞机偏心定位距精确测量. 应用光学. 2018(03): 379-384 . 本站查看
其他类型引用(0)