基于嵌入式GPU的运动目标分割算法并行优化

Embedded GPU-based parallel optimization for moving objects segmentation algorithm

  • 摘要: 在光电监视系统中,广泛应用于运动目标分割的PBAS(pixel base adaptive segmenter)算法计算复杂、参数量大,难以达到实时分割的要求。针对PBAS算法是对图像中每个像素点进行独立处理,特别适合于GPU并行加速的特点,对其在嵌入式GPU平台Jetson TX2上进行了并行优化实现。在数据存储结构、共享内存使用、随机数产生机制3个方面对该算法进行了优化设计。实验结果表明,对于480×320像素分辨率的中波红外视频序列,该并行优化方法可以达到132 fps的处理速度,满足了实时处理的要求。

     

    Abstract: In optoelectronic surveillance systems, the pixel base adaptive segmenter (PBAS) algorithm, which is widely used in moving objects segmentation, is hard to meet the requirements of real-time applications due to its calculating complication and a large amount of computing parameters. With its pixel-level parallelism, deploying PBAS on top of graphic processing unit (GPU) is promising. This paper implements real-time optimization of PBAS on embedded GPU platform-Jetson TX2, employing methods of data storage architecture, shared memory utilization and random number generation. Experimental results show that the parallel optimization method can achieve 132 fps when processing 480×320 pixel medium-wave infrared video sequences, thus meets the real-time processing need.

     

/

返回文章
返回