大视场航空相机光学系统设计

Design of optical system for large-field of view aerocamera

  • 摘要: 针对航空相机复杂的使用环境以及需在高速运动中进行高分辨率成像的特点, 设计了一种大视场航空照相机光学系统。该系统光学结构采用双高斯准对称结构形式,通过双成像模块光学拼接扩大视场角,调整最后一片透镜实现内置调焦,且通过控制地物反射镜的3种工作模式,分别实现航空相机垂直照相、自动调焦及前向像移补偿功能,避免了航拍过程中温度、气压、航高等环境条件变化时引起的图像质量大幅下降,确保整个视场内成像质量不受影响。该光学系统设计实现了全视场无渐晕, 全视场最大畸变<0.5‰,在91 lp/mm处MTF接近衍射极限,物镜在全视场范围内成像质量一致。通过实验室及航拍试验验证,该光学系统具有成像清晰、视场大、可靠性高、体积小、质量轻等优点,满足了航空相机在比较复杂环境下清晰成像的要求。

     

    Abstract: Aiming at the features of complex environment and needing high-resolution imaging in high-speed motion for aerocameras, a large-field of view(FOV) aerocamera optical system was designed. A double Gaussian symmetrical structure was adopted as the optical structure of this system, which expanded the camera's field angle by optical splicing with dual imaging modules, and the built-in focusing was achieved by adjusting the last lens. Throughcontrolling the three working modes of the ground objects reflector, the functions of vertical photograph, automatic focusing and forward image motion compensation for aerocameras were realized, respectively. Meanwhile, the image degradation caused by the changes in environmental conditions such as temperature, air pressure, and altitude during aerial photography was avoided to ensure the imaging quality throughout the FOV was not affected. In this design of the optical system, the full FOV without vignetting was realized, and the maximum distortion of the full FOV was less than 0.5‰. At 91 lp/mm, the modulation transfer function(MTF) was close to the diffraction limit, and the objective lens had the same imaging quality in the full FOV. The experimental results and aerial photography test prove that this optical system has the advantages of clear imaging, large FOV, high reliability, small size and light weight, which satisfies the requirements of the aerocameras to be clearly imaged in a relatively complex aviation environment.

     

/

返回文章
返回