含有双层衍射光学元件的中波/长波消热差光学系统的设计

Design of athermal MWIR/LWIR optical system with double-layer diffractive optical elements

  • 摘要: 建立了工作在一定入射角度范围内的多层衍射光学元件的复合带宽积分平均衍射效率的分析模型。基于衍射光学元件所具有的独特的消色差和消热差性质,设计了一个含有双层衍射光学元件的工作在(3.7~4.8) μm和(7.7~9.5) μm红外双波段光学系统。光学系统的焦距为200 mm,F#为2。采用像元数为320×256、间距为30 μm的制冷型探测器。该系统在空间频率17 lp/mm时,中、长波红外MTF分别高于0.66和0.54;最大RMS半径小于11.702 μm;波前像差小于0.191 7λ;最大离焦量小于焦深;在-55℃~71℃范围内实现了无热化设计。入射到衍射面上的角度为0°~5.19°,该双层衍射光学元件在中波和长波波段的复合带宽积分平均衍射效率分别为99.81%和97.36%。含有双层衍射光学元件的红外双波段光学系统结构简单,像质优良,可以广泛应用于军事探测系统中。

     

    Abstract: The analysis model of comprehensive polychromatic integral diffraction efficiency (PIDE) of multilayer diffractive optical elements (MLDOEs) working within a range of incident angle was established. Based on the special characteristics of achromatism and athermalization of MLDOEs, an infrared dual-band optical system with double-layer DOEs working in the 3.7 μm~4.8 μm and 7.7 μm~9.5 μm wavebands was designed. The effective focal length of the optical system is 200 mm, and F # is 2. The cooled focal plane array is 320×256 and the pixel pitch is 30 μm. The MTF is higher than 0.66 and 0.54 at the frequency of 17 lp/mm for mid-wave infrared (MWIR) and long-wave infrared (LWIR), respectively. The maximal root-mean-square(RMS) radius is less than 11.702 μm, the wavefront error is smaller than 0.191 7λ and the maximal defocus is less than the focus depth, the designed optical system realizes athermalization over the temperature range from -55℃ to 71℃. The incident angle upon the diffractive surface is within the range of 0°~5.19°, the comprehensive PIDE of the double-layer DOEs are 99.81% and 97.36% for the MWIR and LWIR waveband, respectively. The structure of the designed infrared dual-band optical system with double-layer DOEs is simple with good image quality, can be used in military detection system.

     

/

返回文章
返回