Abstract:
Calculation formulas of parameters which are needed for establishing a linear Fresnel concentrator model in SolTrace software were derived by geometrical optical principles, and a modeling method was given by the example. The results show that for the linear Fresnel reflector which is composed of reflectors with 21 rows, 0.38 m width, 4 m length, the compound parabolic concentrator (CPC) with 45° maximum acceptance angle and the vacuum tube with 5.3 m height, the energy flux density on the vacuum collector tube gradually increases and the uniformity becomes better with the increasing of the solar incident angle. When the solar incident angle is greater than 40°, the energy flux density and the uniformity tend to be stable. What's more, the energy flux density on the vacuum collector tube is bigger and the uniformity is better for the CPC with involutes + cusp reflectors than the CPC with involutes + parabolas. The results have a directive function for the popularization and application of the linear Fresnel concentrator.