一种光学探测海底粗糙度的算法及其实验研究

高荪培, 徐剑, 邹博

高荪培, 徐剑, 邹博. 一种光学探测海底粗糙度的算法及其实验研究[J]. 应用光学, 2019, 40(3): 435-439. DOI: 10.5768/JAO201940.0302005
引用本文: 高荪培, 徐剑, 邹博. 一种光学探测海底粗糙度的算法及其实验研究[J]. 应用光学, 2019, 40(3): 435-439. DOI: 10.5768/JAO201940.0302005
GAO Sunpei, XU Jian, ZOU Bo. Optical detection algorithm for seafloor roughness and its experimental study[J]. Journal of Applied Optics, 2019, 40(3): 435-439. DOI: 10.5768/JAO201940.0302005
Citation: GAO Sunpei, XU Jian, ZOU Bo. Optical detection algorithm for seafloor roughness and its experimental study[J]. Journal of Applied Optics, 2019, 40(3): 435-439. DOI: 10.5768/JAO201940.0302005

一种光学探测海底粗糙度的算法及其实验研究

基金项目: 

国家自然科学基金 41706106

海洋环境信息保障技术重点实验室开放课题基金 080-0401120006

详细信息
    作者简介:

    高荪培(1994-), 女, 硕士研究生, 主要从事海底声散射和阵列信号处理方向研究。E-mail:gaosunpei@tju.edu.cn

  • 中图分类号: TN912.16

Optical detection algorithm for seafloor roughness and its experimental study

  • 摘要:

    海底微地形粗糙度作为海底沉积物重要的物理性质, 对于海洋工程以及海洋科学考察都有着重要意义, 如何利用光学理论进行海底微地形粗糙度测量, 是近年来该领域研究关注的热点。基于光学中的从明暗恢复形状(shame from shading, SFS)算法, 提出一种快速的海底微地形粗糙度测量算法, 在模型构建同时, 添加水下光传播时的吸收和衰减模型, 测量出海底的微地形, 并用幂律形式进行参数拟合, 以表征粗糙度。仿真证明该算法具有95%的置信度, 是一种适用于海底微地形粗糙度测量的光学算法, 并经过实验验证, 证明其有效性和正确性。

    Abstract:

    As an important physical property of seafloor sediments, the seafloor micro-topography roughness is of great significance to marine engineering and scientific investigation. How to measure seafloor micro-topography roughness by optical method has been a hot topic in this field in recent years. Based on the shape from shading (SFS) algorithm in optics, a fast seafloor micro-topography roughness algorithm was put forward. While constructing the model, the absorption and attenuation model of underwater light propagation was considered, and the seafloor micro-topography roughness was measured and the parameters were fitted according to the power law form. Simulation results prove that the algorithm has 95% confidence, it is suitable for seafloor micro-topography roughness measurement, and its validity and correctness are proved by experiments.

  • 图  1   水下光传播路径

    Figure  1.   Underwater light propagation

    图  2   水下装置配置示意图

    Figure  2.   Underwater installation schematic

    图  3   图像及其DEM

    Figure  3.   Underwater micro-topography image and its DEM

    图  4   计算得到的功率谱密度

    Figure  4.   Cabculated 2-D power spectra density

    图  5   拟合后的功率谱强度

    Figure  5.   Roughness power spectra intensity after fitting

    图  6   即墨附近水域海图及典型海底沙坡地形

    Figure  6.   Nautical chart near Jimo and seabed ripples diagram

    图  7   海底沙坡及其对应的功率谱强度

    Figure  7.   Simulated seabed ripples and its power spectrum intensity

    图  8   拟合后的功率谱强度

    Figure  8.   Roughness power spectra intensity after fitting

    图  9   手工测量和立体相机测量方法

    Figure  9.   Manual and stereo camera measurement methods

  • [1] 唐应吾.海底沉积物上的声反射[J].声学学报, 1994, 19(4):278-289. http://www.cnki.com.cn/Article/CJFDTotal-XIBA404.004.htm

    TANG Yingwu. Reflection of acoustic waves from marine sediment[J]. Acta Acustica, 1994, 19(4):278-289. http://www.cnki.com.cn/Article/CJFDTotal-XIBA404.004.htm

    [2]

    LYONS A P, POULIQUEN E. Advances in high-resolution seafloor characterization in support of high-frequency underwater acoustics studies:techniques and examples[J]. Measurement Science and Technology, 2004, 15(12):R59-R72. http://cn.bing.com/academic/profile?id=5a83258670581ec5ac3afc83d6ba1414&encoded=0&v=paper_preview&mkt=zh-cn

    [3]

    SCHMIDT V E, RZHANOV Y. Measurement of micro-bathymetry with a GOPRO underwater stereo camera pair[C]. USA: IEEE, 2012: 1-6.

    [4]

    CHOTIROS N P, ISAKSON M J, PIPER J N, et al. Sea floor roughness measured by a laser profiler on a ROV[C].USA: IEEE, 2014: 1-4.

    [5]

    DI MARTINO G, DI SIMONE A, IODICE A, et al. On shape from shading and SAR images: an overview and a new perspective: 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec City, July 13-18, 2014, Canada[C].USA: IEEE, 2014: 1333-1336.

    [6]

    CLAY C S, LEONG W K. Acoustic estimates of the topography and roughness spectrum of the sea floor southwest of iberian peninsula[M].Boston: Springer, 1974: 373-446.

    [7] 陈刚, 周文静, 胡祯, 等.表面粗糙度数字全息检测[J].应用光学, 2014, 35(6):1040-1047. http://www.yygx.net/CN/abstract/abstract10530.shtml

    CHEN Gang, ZHOU Wenjing, HU Zhen, et al. Surface roughness measurement based on digital holography[J]. Journal of Applied Optics, 2014, 35(6):1040-1047. http://www.yygx.net/CN/abstract/abstract10530.shtml

    [8] 陈曼龙, 侯东明, 王会江.车削零件表面粗糙度图像法检测优选方法[J].应用光学, 2017, 38(2):227-230. http://www.yygx.net/CN/abstract/abstract10921.shtml

    CHEN Manlong, HOU Dongming, WANG Huijiang. Optimal method for image detection based on surface roughness of turning parts[J]. Journal of Applied Optics, 2017, 38(2):227-230. http://www.yygx.net/CN/abstract/abstract10921.shtml

    [9]

    HLéN J, BENGTSSON E, LINDELL T. Color correction of underwater images based on estimation of diffuse attenuation coefficients: The PICS Conference, An International Technical Conference on The Science and Systems of Digital Photography, including the Fifth International Symposium on Multispectral Color Science, NY, May 13, 2003[C].[S.l.]: [s.n.], 2003: 325-329.

    [10]

    ZHANG S M, NEGAHDARIPOUR S. 3-D shape recovery of planar and curved surfaces from shading cues in underwater images[J]. IEEE Journal of Oceanic Engineering, 2002, 27(1):100-116. doi: 10.1109/48.989895

    [11]

    YU T, XU N, AHUJA N. Recovering shape and reflectance model of non-lambertian objects from multiple views[J]. IEEE Cvpr, 2004, 2:226-233. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC026945001

    [12]

    ZHENG Q, CHELLAPPA R. Estimation of illuminant direction, albedo, and shape from shading[C]//Proceedings of 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.USA: IEEE, 1991: 540-545.

    [13]

    TSAI P S, SHAH M. A fast linear shape from shading[C]//Proceedings of 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. USA: IEEE, 1992: 734-736.

    [14]

    BRIGGS K B, LYONS A P, POULIQUEN E, et al. Seafloor Roughness, Sediment Grain Size, and Temporal Stability[C]//Underwater Acoustic Measurements: Technologies &Results. USA: AGRIS, 2005.

    [15]

    BRIGGS K B. Microtopographical roughness of shallow-water continental shelves[J]. IEEE Journal of Oceanic Engineering, 1989, 14(4):360-367. doi: 10.1109/48.35986

  • 期刊类型引用(12)

    1. 张建付,王松林,杨崇民,李明伟,米高园,赵红军. 屏蔽电磁波和红外的激光滤光片研制. 光学技术. 2021(05): 561-564 . 百度学术
    2. 潘俊旭,谢洪波,马骏,陈悦,杨磊. 用于激光测距的小F数接收光学系统设计. 应用光学. 2020(01): 18-23 . 本站查看
    3. 田晶. 基于NUFFT的多光谱数据同步采集与处理系统设计. 激光技术. 2020(03): 353-357 . 百度学术
    4. 陈朋,严宪泽,韩洋洋,吴晨阳,昝昊. 基于PCA和BP神经网络的硝酸盐氮浓度检测方法. 应用光学. 2020(04): 761-768 . 本站查看
    5. 孙海峰. 基于DSPs的实时多光谱检测系统研究. 电子器件. 2019(01): 222-225 . 百度学术
    6. 马丹. 基于FPGA+DSP的高速多光谱复现系统研究. 激光杂志. 2019(11): 29-32 . 百度学术
    7. 孙颖馨. 基于FPGA红外成像光谱数据处理系统研究. 激光技术. 2019(06): 763-767 . 百度学术
    8. 孙颖馨. 一种用于增强拼接图像成像质量的数据处理系统. 现代电子技术. 2019(24): 88-91 . 百度学术
    9. 孙海峰,孙秀玲,张景波,李娟. 基于DSP的高速多光谱探测系统研究. 江西师范大学学报(自然科学版). 2018(02): 144-148 . 百度学术
    10. 张小燕. 基于DSP的多光谱数据处理系统设计与实现. 红外技术. 2018(06): 545-550 . 百度学术
    11. 李娟,孙秀玲,孙海峰. 基于DSP的多光谱快速校正及重建系统设计. 激光杂志. 2018(05): 41-44 . 百度学术
    12. 李娟,孙秀玲,孙海峰. 改进型Mertz法在多光谱数据重建中的应用. 中山大学学报(自然科学版). 2018(04): 104-109 . 百度学术

    其他类型引用(4)

图(9)
计量
  • 文章访问数:  381
  • HTML全文浏览量:  176
  • PDF下载量:  23
  • 被引次数: 16
出版历程
  • 收稿日期:  2018-09-25
  • 修回日期:  2019-01-18
  • 刊出日期:  2019-04-30

目录

    /

    返回文章
    返回