可见/近红外超光谱碲镉汞焦平面研究

张姗, 沈益铭, 刘丹, 钟艳红, 魏彦锋, 廖清君, 陈洪雷, 林春, 丁瑞军, 何力

张姗, 沈益铭, 刘丹, 钟艳红, 魏彦锋, 廖清君, 陈洪雷, 林春, 丁瑞军, 何力. 可见/近红外超光谱碲镉汞焦平面研究[J]. 应用光学, 2019, 40(3): 429-434. DOI: 10.5768/JAO201940.0202004
引用本文: 张姗, 沈益铭, 刘丹, 钟艳红, 魏彦锋, 廖清君, 陈洪雷, 林春, 丁瑞军, 何力. 可见/近红外超光谱碲镉汞焦平面研究[J]. 应用光学, 2019, 40(3): 429-434. DOI: 10.5768/JAO201940.0202004
ZHANG Shan, SHEN Yiming, LIU Dan, ZHONG Yanhong, WEI Yanfeng, LIAO Qingjun, CHEN Honglei, LIN Chun, DING Ruijun, HE Li. Research on HgCdTe focal plane arrays for ultra-spectrumdetection in Vis/NIR[J]. Journal of Applied Optics, 2019, 40(3): 429-434. DOI: 10.5768/JAO201940.0202004
Citation: ZHANG Shan, SHEN Yiming, LIU Dan, ZHONG Yanhong, WEI Yanfeng, LIAO Qingjun, CHEN Honglei, LIN Chun, DING Ruijun, HE Li. Research on HgCdTe focal plane arrays for ultra-spectrumdetection in Vis/NIR[J]. Journal of Applied Optics, 2019, 40(3): 429-434. DOI: 10.5768/JAO201940.0202004

可见/近红外超光谱碲镉汞焦平面研究

基金项目: 

中科院国防科技创新基金项目资助 CXJJ-16S011

详细信息
    作者简介:

    张姗(1984-), 女, 博士, 副研, 主要从事新型高性能碲镉汞探测器研究。E-mail:zhangshan@mail.sitp.ac.cn

  • 中图分类号: TN219

Research on HgCdTe focal plane arrays for ultra-spectrumdetection in Vis/NIR

  • 摘要: 为了满足可见-近红外波段的高光谱分辨率和高灵敏观测需求, 采用大面阵、低噪声碲镉汞焦平面制备技术和低损伤衬底去除技术, 成功制备了高信噪比大面阵可见/近红外碲镉汞焦平面探测器。无损衬底去除技术采用机械抛光和化学腐蚀相结合的方法, 使焦平面的响应波段拓展至400 nm~2 600 nm。采用信号定量化焦平面测试评价手段对可见/近红外碲镉汞焦平面的性能进行评估, 640×512 25 μm中心距碲镉汞焦平面的波段量子效率可达到88.4%, 信噪比达到287, 有效像元率大于98%, 能够获得清晰的可见和近红外波段图像。
    Abstract: To meet the requirement of high-resolution and high-sensitivity observation in visible-near infrared, the HgCdTe focal plane arrays(FPAs) with high signal-to-noise ratio was fabricated based on the large-array low-noise HgCdTe detector manufacture technology and low-damage substrate removal technology. The response of short-wave infrared detector was extended to 400 nm~2 600 nm by the ZnCdTe substrate removed with mechanical thinning and chemical wet etching technology. After the fabrication of the Vis/NIR 640×512 pixel 25 m FPAs, the performance was evaluated with a certain quantity of radiation. The results indicate that the quantum efficiency is approximately 88.4% at 2.32 μm waveband, the effective pixel rate is 98% and the signal-to-noise ratio is 287, the clear imaging quality in Vis/NIR waveband can be obtained.
  • 图  1   CdZnTe/HgCdTe液相外延材料实物图

    Figure  1.   Photograph of CdZnTe/HgCdTe materials grown by LPE

    图  2   CdZnTe / HgCdTe探测器结构剖面图

    Figure  2.   Cross-section schematic of CdZnTe/HgCdTe detector

    图  3   640×512 CdZnTe/HgCdTe焦平面探测器模块图

    Figure  3.   Photograph of 640×512 CdZnTe/HgCdTe FPAs detector module

    图  4   衬底去除前、后探测器的响应光谱图

    Figure  4.   Relative response spectra of detector before and after substrate removal

    图  5   640×512 Vis/NIR HgCdTe焦平面响应

    Figure  5.   Response histogram of 640×512 Vis/NIR HgCdTe FPAs

    图  6   640×512 Vis/NIR HgCdTe焦平面噪声

    Figure  6.   RMS noise histogram of 640×512 Vis/NIR HgCdTe FPAs

    图  7   640×512 Vis/NIR HgCdTe焦平面的归一化响应光谱图(0.4 μm~3.0 μm)

    Figure  7.   Normalized spectral response of 640 512 Vis/NIR HgCdTe FPAs(0.4 μm~3.0 μm)

    图  8   100 K时窄带通滤光片的归一化透射光谱

    Figure  8.   Normalized spectral response of narrow band pass filter at 100 K

    图  9   计算得到器件的量子效率与响应率的对应关系

    Figure  9.   Relationship between calculated quantum efficiency and FPAs' responsivity

    图  10   640×512 Vis/NIR HgCdTe焦平面的量子效率谱

    Figure  10.   Quantum efficiency spectrum of 640×512 Vis/NIR HgCdTe FPAs

    图  11   可见/近红外大面阵碲镉汞焦平面拍摄的可见、短波红外图像

    Figure  11.   Visual (left) and NIR (right) images acquired by 640 512, 25 m HgCdTe FPAs

    表  1   640×512 Vis/NIR HgCdTe焦平面性能

    Table  1   Characteristics of 640×512 Vis/NIR HgCdTe FPAs

    测试结果
    平均响应率/(V·W-1) 5.13E+07
    响应/(mV·K-1) 56.8
    噪声/ (mV) 2.68
    响应率非均匀性/(%) 9.8
    有效像元率/ (%) 98.8
    下载: 导出CSV
  • [1] 张若岚, 陈洁.从单波段到超光谱——面向多维信息感知的红外光谱成像技术[J].红外技术, 2014, 36(4):257-264. http://d.old.wanfangdata.com.cn/Periodical/hwjs201404001

    ZHANG Ruolan, CHEN Jie. From single-band to ultraspectral——infrared spectral imaging technology oriented to multi-dimension information awareness[J], Infrared Technology, 2014, 36(4):257-264. http://d.old.wanfangdata.com.cn/Periodical/hwjs201404001

    [2]

    GOETZ A, VANE G, Imaging spectrometry of earth remote sensing[J]. Science, 1985, 228:1147-1153. doi: 10.1126/science.228.4704.1147

    [3]

    BRECKINRIDGE J B. Evolution of imaging spectrometry:past, present, and future[J]. SPIE, 1996, 2819:2-6. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_3757728

    [4] 孙允珠, 蒋光伟, 李云端, 等.高光谱观测卫星及应用前景[J].上海航天, 2017, 34(3):1-13. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=shht201703001

    SUN Yunzhu, JIANG Guangwei, LI Yunduan, et al. Hyper-spectral observation satellite and it's application prospect[J]. Aerospace Shanghai, 2017, 34(3):1-13. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=shht201703001

    [5] 贺霖, 潘东, 邸辑, 等.高光谱图像目标检测研究进展[J].电子学报, 2009, 37(9):2016-2024. doi: 10.3321/j.issn:0372-2112.2009.09.024

    HE Lin, PAN Dong, DI Ji, et al. Research advance on target detection for hyperspectral imagery[J]. Acta Electronica Sinica, 2009, 37(9):2016-2024. doi: 10.3321/j.issn:0372-2112.2009.09.024

    [6] 熊伟.星载超光谱大气主要温室气体监测载荷[J].航天返回与遥感, 2018, 39(3):14-24. doi: 10.3969/j.issn.1009-8518.2018.03.002

    XIONG Wei. Hyperspectral greenhouse gases monitor instrument(GMI) for spaceborne payload[J]. Spacecraft Recovery & Remote Sensing, 2018, 39(3):14-24. doi: 10.3969/j.issn.1009-8518.2018.03.002

    [7]

    PIQUETTEE C, EDWALLD D, ARNOLD H, et al. Substrate-removed HgCdTe-based focal-plane arrays for short-wavelength infrared astronomy[J]. Journal of Electronic Materials, 2008, 37(9):1396-1400. doi: 10.1007/s11664-008-0421-8

    [8]

    ROGALSKI A. Infrared detectors:status and trends[J]. Progress in Quantum Electronics, 2004, 27:59-210. http://d.old.wanfangdata.com.cn/Periodical/hwyjggc201212003

    [9] 高国龙.法国Sofradir公司的空间高光谱传感技术[J].红外, 2017, 38(2):46-48. doi: 10.3969/j.issn.1672-8785.2017.02.008

    GAO Guolong. Hyperspectral remote sensing technology of Sofradir Co. in France[J]. Infrared, 2017, 38(2):46-48. doi: 10.3969/j.issn.1672-8785.2017.02.008

    [10] 陈宇恒, 季轶群, 周建康, 等.机载可见-红外超光谱成像仪信噪比的估算[J].红外与激光工程, 2012, 41(9):2300-2303. doi: 10.3969/j.issn.1007-2276.2012.09.010

    CHEN Yiheng, JI Yiqun, ZHOU Jiankang, et al. Signal-to-noise ratio evaluation of airborne visible-infrared hyperspectral imaging spectrometer[J]. Infrared and Laser Engineering, 2012, 41(9):2300-2303. doi: 10.3969/j.issn.1007-2276.2012.09.010

    [11]

    ASAHI T, ODA O, TANIGUCHI Y, et al. Characterization of 100mm Diameter CdZnTe single crystals grown by the vertical gradient freezing method[J]. Journal of Crystal Growth, 1995, 149(1-2):23-29. doi: 10.1016/0022-0248(94)00966-X

    [12]

    NGUYEN T, LORANS D. Highlights of recent results on HgCdTe thin film photo-conductors[J].Semiconductor Science and Technology, 1991, 6:93-95. doi: 10.1088/0268-1242/6/2/004

    [13]

    LO VECCHIO P, WONG K, PARODOS T, et al. Advances in liquid phase epitaxial growth of Hg1-xCdxTe for SWIR through VLWIR photodiodes[J]. SPIE, 2004, 5564:65-72. doi: 10.1117/12.566470.full

    [14]

    CHANDRA D, TREGILGAS J H, GDDOWIN M W. Dislocation density variations in HgCdTe films grown by dipping liquid phase epitaxy:Effects on metal-insulator-semiconductor properties[J]. Journal of Vacuum Science Technology B, 1991, 9(3):1852-1857. doi: 10.1116/1.585811

    [15]

    LU W, HE L, CHEN X S, et al. The development of HgCdTe infrared detector technology in China[J], SPIE, 2009, 7298: 72982Z-1-13.

图(11)  /  表(1)
计量
  • 文章访问数:  1210
  • HTML全文浏览量:  275
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-24
  • 修回日期:  2018-11-07
  • 刊出日期:  2019-04-30

目录

    /

    返回文章
    返回