基于原向反射式激光光幕厚度一致性研究

Study on thickness consistency of primary reflection laser screen

  • 摘要: 在原向反射式激光光幕测速技术中,针对半导体激光光源产生的激光光束散射角使得出射光幕厚度不一致、原向反射屏产生的反射光幕剩余发散角使反射光幕厚度不一致这两方面导致弹丸穿过光幕不同位置触发光幕响应时间不一致的问题,根据几何光学原理,对半导体激光器弧矢与子午方向建立数学模型,设计了具有不同面型的非球面准直透镜组,将出射光斑尺寸控制在1 mm之内且子午和弧矢方向发散角分别为0.13 mrad、0.46 mrad。出射光束经过Powell透镜一维扩束后,形成厚度为1 mm、均匀度达到85.7%的扇形出射光幕,经过原向反射后,配合狭缝光阑使反射光幕有效厚度控制在1 mm。使用Zemax软件模拟弹丸过靶仿真,弹丸不遮挡系统光幕时探测器接收到原向反射光强1.54 mW,弹丸遮挡系统光幕时探测器接收到原向反射光强为1.03 mW。当弹丸紧贴出射光幕侧面边缘(即1 mm光幕边缘),分别距离光源100 mm、300 mm、500 mm处的弹丸触发探测器接收到的光强大小均为1.54 mW,显然,光强相对于无弹丸遮挡光幕情况下没有产生变化,证明系统有效可探测光幕厚度一致且为1 mm。该结果表明,本研究方案具有可行性。

     

    Abstract: In the primary reflection type laser screen velocity measuring technique, the scattering angle of the laser beam generated by the semiconductor laser source makes the thickness of the emergent optic screen inconsistent, and the residual divergence angle of the reflected optic screen generated by the primary reflective screen makes the thickness of the reflected optic screen inconsistent, the two aspects from which lead to the problem that the projectile passing through different positions of the optic screen to trigger the response time of the optic screen inconsistent. According to the geometrical optics principle, the mathematical model of the sagittal and meridional directions of the semiconductor laser was established, and the aspherical collimating lens groups with different surface figures were designed, the size of the exit spot was controlled within 1 mm and the divergence angles of the meridional and sagittal directions were 0.13 mrad and 0.46 mrad, respectively. After the exit beam was one-dimensionally expanded by the Powell lens, a fan-shaped exit light screen with a thickness of 1 mm and a uniformity of 85.7% was formed. And after the original reflection, the effective thickness of the reflected light curtain was effectively controlled to 1 mm with the slit aperture. Moreover, the Zemax software was used to simulate the projectile passing throuth the screen. When the projectile did not block the system laser screen, the detector received the original reflected light intensity of 1.54 mW; when the projectile blocked the system laser screen, the detector received the original reflected light intensity of 1.03 mW; when the projectile was close to the side edge of the exit laser screen (ie, 1 mm from the screen edge), the light intensity received by the projectile trigger detector respectively at 100 mm, 300 mm, and 500 mm from the light source was all 1.54 mW. Obviously, there is no change in light intensity relative to the absence of the projectile blocking laser screen, which proves that the effective detectable optic screen thickness of the system is consistent and 1 mm. This result indicates that the research scheme is feasible.

     

/

返回文章
返回