Design of zoom projection lens with large aperture and wild view
-
摘要: 为了满足大孔径大视场变焦投影镜头的市场需求, 基于Zemax光学软件设计一款连续变焦的投影镜头, 变焦范围为16.27 mm~22.77 mm, 视场角为63.7°~47.8°, F数为1.75~1.95, 配合1.55 cm(0.61英寸)LCOS投影显示芯片使用, 在工作距离2 000 mm处可投射出190.5 cm(75英寸)画面, 光学系统总长小于160 mm, 由10片透镜组成, 其中包括8片玻璃透镜和2片塑料透镜。设计结果表明:镜头在空间极限频率71 lp/mm处, 各个焦段的MTF值均大于0.5, 场曲都在0.1 mm之内, 畸变小于3%, 成像质量良好。最后对光学系统进行了公差分析, 得出一组较宽松的公差。Abstract: To meet the market demand of large aperture and wide field zoom projection lens, we designed a zoom lens based on ZEMAX optical software.The zoom range is 16.27 mm~22.77mm, its field of view (FOV) is 63.7°~47.8°, the F number is 1.75-1.95.Working with a 1.55 cm (0.61 inch) LCOS projection display chip, a 190.5 cm(75 inch) picture can be projected at a distance of 2000mm.The total length of optical system is less than 160mm, it is composed of 10 lenses, which include 8 glass lenses and 2 plastic lenses.Design results show that at the space frequency limit 71lp/mm, the full FOV MTF is greater than 0.5 and the field curvature of each zoom section is within 0.1mm, the distortion is within 3%, and the imaging quality is good.Finally, we conducted the tolerance analysis of the optical system, and obtained a set of loose machining tolerances.
-
Keywords:
- optical design /
- projection zoom lens /
- large aperture /
- wild view
-
-
表 1 变焦镜头设计指标
Table 1 Design parameters of zoom lens
参数 指标 焦距范围/mm 16.27~22.77 F数 1.75~1.95 显示芯片尺寸/cm 1.55(16:9) 视场/(°) 63.8~47.8 光学系统总长/mm ≤160 投射比 1.2:1 波段 可见光 畸变/% ≤3 调制传递函数(@71lp/mm) ≥0.5 表 2 数据表
Table 2 Data
x/mm y1/mm y2/mm 16.27 114.736 92.264 17.89 112.169 96.321 19.52 111.163 100.101 21.14 111.117 103.662 22.77 111.708 107.037 表 3 蒙特卡罗采样分析结果
Table 3 Results of Monte Carlo sampling analysis
采样比率/% 短焦时MTF值 中焦时MTF值 长焦时MTF值 ≥90 0.322 896 64 0.321 004 72 0.310 482 67 ≥50 0.418 896 62 0.420 704 03 0.407 776 41 ≥10 0.487 256 34 0.519 979 17 0.471 974 70 -
[1] 刘巧玲.可变焦距机器视觉镜头光学系统设计[D].福州: 福建师范大学, 2015: 19-21. LIU Qiaoling.Design of variable vision machine vision lens optical system[D]. Fuzhou: Fujian Normal University, 2015: 19-21.
[2] 姜凯, 周泗忠, 王艳彬, 等.30×中波红外连续变焦光学系统设计[J].红外与激光工程, 2012(8):2162-2166. doi: 10.3969/j.issn.1007-2276.2012.08.037 JIANG Kai, ZHOU Sizhou, WANG Yanbin, et al.Design of 30× medium wave infrared continuous zoom optical system[J].Infrared and Laser Engineering, 2012(8):2162-2166. doi: 10.3969/j.issn.1007-2276.2012.08.037
[3] 罗春华, 岳品良, 张东虎, 等.变焦投影物镜光学系统设计[J].应用光学, 2017, 38(2):180-186. http://d.old.wanfangdata.com.cn/Periodical/yygx201702005 LUO Chunhua, YUE Pinliang, ZHANG Donghu, et al.Optical design of zoom projection lens[J].Journal of Applied Optics, 2017, 38(2):180-186 http://d.old.wanfangdata.com.cn/Periodical/yygx201702005
[4] 高志山.ZEMAX软件在像差设计中的应用[M].南京: 南京理工大学出版社, 2006: 47-53. GAO Zhishan. Application of ZEMAX software in aberration design[M]. Nanjing: Nanjing University of Technology Press, 2006: 47-53.
[5] 卞殷旭, 王恒, 郭添翼, 等.超短投影距的投影物镜设计[J].光学学报, 2015, 35(12):1222002-2. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxxb201512032 BIAN Yinxu, WANG Heng, Guo Tianyi, et al. Projection of super short projection distance[J]. Acta Optics Sinica, 2015, 35(12):1222002-2. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxxb201512032
[6] 闫晶.高变倍比红外连续变焦光学系统设计研究[D].长春: 长春理工大学, 2014. YAN Jing.Study on the designof high-variable ratio infrared continuous zoom optical system[D]. Changchun: Changchun University of Science and Technology, 2014.
[7] 姚多舜.连续变焦光学系统设计讲座:机械补偿式三组元连续变焦光学系统的设计方法(1)[J].应用光学, 2008, 29(1):1-3. doi: 10.3969/j.issn.1002-2082.2008.01.002 YAO Duoshun.The design method of three sets of continuous zoom optical systems for the design of a continuous zoom optical system design (1)[J]. Journal of Applied Optics, 2008, 29(1):1-3. doi: 10.3969/j.issn.1002-2082.2008.01.002
[8] CAIDWELL J B. Traeking zoom lens developments via the patent literature[J].SPIE, 2001, 4487:19-41.
-
期刊类型引用(3)
1. 陈炳旭,杨旭,张智强,栾晓宇,蒋锐. 宽波段折反射式航空相机设计. 红外技术. 2024(08): 864-871 . 百度学术
2. 刘旭,尹晶,刘玉桥,王强,胡雪莹. 直线运动动态目标发生器光学系统设计. 光学技术. 2022(06): 664-667+678 . 百度学术
3. 姜东旭,孙宝玉,李迎春,林洁琼,王冬雪,王文攀. 机载相机非球面光学系统热光学特性分析. 应用光学. 2020(02): 270-275 . 本站查看
其他类型引用(6)