天基平台激光清除小尺度空间碎片降轨特性研究

杨丽薇, 温泉, 赵尚弘, 方英武, 王轶, 张健, 郭雯娟

杨丽薇, 温泉, 赵尚弘, 方英武, 王轶, 张健, 郭雯娟. 天基平台激光清除小尺度空间碎片降轨特性研究[J]. 应用光学, 2018, 39(2): 268-273. DOI: 10.5768/JAO201839.0207001
引用本文: 杨丽薇, 温泉, 赵尚弘, 方英武, 王轶, 张健, 郭雯娟. 天基平台激光清除小尺度空间碎片降轨特性研究[J]. 应用光学, 2018, 39(2): 268-273. DOI: 10.5768/JAO201839.0207001
Yang Liwei, Wen Quan, Zhao Shanghong, Fang Yingwu, Wang Yi, Zhang Jian, Guo Wenjuan. Research on de-orbiting characteristic of small scale space debris removal using space-based laser[J]. Journal of Applied Optics, 2018, 39(2): 268-273. DOI: 10.5768/JAO201839.0207001
Citation: Yang Liwei, Wen Quan, Zhao Shanghong, Fang Yingwu, Wang Yi, Zhang Jian, Guo Wenjuan. Research on de-orbiting characteristic of small scale space debris removal using space-based laser[J]. Journal of Applied Optics, 2018, 39(2): 268-273. DOI: 10.5768/JAO201839.0207001

天基平台激光清除小尺度空间碎片降轨特性研究

基金项目: 

国家自然科学基金 61571461

陕西省自然科学基金 2016JM6051

陕西省青年科技新星项目 2015Kjxx-46

详细信息
    作者简介:

    杨丽薇(1988-),女,辽宁大连人,博士研究生,主要从事空间激光信息技术方面的研究工作。E-mail:yangliweiss@163.com

    通讯作者:

    赵尚弘(1964-),男,甘肃临洮人,博士,教授,博士生导师,主要从事空间激光信息技术方面的研究工作。E-mail: zhaoshangh@aliyun.com

  • 中图分类号: TN249

Research on de-orbiting characteristic of small scale space debris removal using space-based laser

  • 摘要: 通过建立空间碎片自旋与非自旋模型,分析了天基激光作用下碎片速度的变化规律,在此基础上研究了激光辐照作用下空间碎片的变轨模型。通过仿真分析空间碎片的近地点与远地点高度的变化量在碎片运行轨道不同位置与高能脉冲激光作用的变化规律,对比分析激光在不同辐照角度下与碎片作用时的降轨清理效果。研究结果表明:天基激光清除空间碎片存在最佳作用区域,降轨清理的最佳位置在初始真近角f=120°和f=240°位置附近;激光作用碎片的辐照角度对碎片的降轨清理效果有较大影响,激光在不同辐照角度与碎片作用时的降轨清理效果相对碎片轨道椭圆主轴具有对称性。
    Abstract: The models of the spinning and non-spinning space debris were established, the velocity variation of the space debris ablating by space-based laser was analyzed, and the orbit maneuver of the space debris irradiating by laser was modeled and investigated. The variations of the perigee and apogee altitudes in different locations of the space debris orbit under the irradiation of high-energy pulse laser were simulated and analyzed, and the debris removal efficiency by using laser in different irradiation angles was analyzed relatively. The simulation results show that, there is an optimal action area of removal of space debris using space-based laser. The initial true anomaly of debris for most effective de-orbiting effect is around 120° and 240°. The angle of laser irradiating debris has a great influence on removal efficiency. The removal efficiency of laser irradiating debris in different angles has the symmetry relative to the elliptical axis of debris orbit.
  • 图  1   天基激光清除在轨空间碎片原理

    Figure  1.   Schematic of removal of orbiting space debris by using space-based laser

    图  2   薄铝板映射在x-y平面的示意图

    Figure  2.   Schematic of thin aluminum plate projected onto x-y plane

    图  3   激光与靶相互作用的几何示意图

    Figure  3.   Geometry diagram of laser-target interaction

    图  4   Δrp随初始真近角变化

    Figure  4.   Δrp vensus initial true anomaly

    图  5   Δra随初始真近角变化

    Figure  5.   Δrp vensus. initial true anomaly

    图  6   激光不同作用角度下单个脉冲产生的Δrp

    Figure  6.   Δrp with single laser pulse in different interaction directions

    表  1   激光器参数

    Table  1   Laser parameters

    参数 数值
    距离/km 5
    波长/μm 1.06
    光束因子 2.0
    效率因子/% 30
    光斑半径/cm 31
    脉冲能量/kJ 7.3
    到靶能量(kJ/m2) 53
    重频/Hz 11.2
    下载: 导出CSV

    表  2   空间碎片物理参数

    Table  2   Space debris physical parameters

    空间碎片铝靶参数 数值
    面质比/(kg·m-2) 10
    质量/kg 0.75
    角速度/(rad·s-1) 2.5
    冲量耦合系数/μNs·J-1 75
    下载: 导出CSV
  • [1] 李春来, 欧阳自远, 都亨.空间碎片与空间环境[J].第四纪研究, 2002, 22(6): 540-551. http://d.old.wanfangdata.com.cn/Periodical/dsjyj200206008

    LI Chunlai, OUYANG Ziyuan, DU Heng. Space debris and space environment[J]. Quaternary Sciences, 2002, 22(6): 540-551. http://d.old.wanfangdata.com.cn/Periodical/dsjyj200206008

    [2] 龚自正, 徐坤博, 牟永强, 等.空间碎片环境现状与主动移除技术[J].航天器环境工程, 2014, 31(2): 129-135. http://d.old.wanfangdata.com.cn/Periodical/htqhjgc201402003

    GONG Zizheng, XU Kunbo, MU Yongqiang, et al. The space debris environment and the active debris removal techniques[J]. Spacecraft Environment Engineering, 2014, 31(2): 129-135. http://d.old.wanfangdata.com.cn/Periodical/htqhjgc201402003

    [3]

    APOLLONOV V V. High power lasers for space debris elimination[J]. Chinese Optics, 2013, 6(2): 187-195. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zggxyyygxwz201302008

    [4]

    PHIPPS C, ALBRECHT U, FRIEDMAN H, et al. Orion: clearing near-earth space debris using a 20 kW, 530 nm, earth-based, repetitively pulse laser[J]. Laser and Particle Beams, 1996. 14(1): 1-44. doi: 10.1117/12.270174.full

    [5]

    ESMILLER B, JACQUELARDB C. Clean space small debris removal by laser illumination and complementary technologies[C].New York: American Institute of Physics, 2011: 347-353.

    [6] 金星, 洪延姬, 常浩.地基激光清除椭圆轨道空间碎片特性的计算分析[J].航空学报, 2013. 34(9): 2064-2073. http://d.old.wanfangdata.com.cn/Periodical/hkxb201309007

    JIN Xing, HONG Yanji, CHANG Hao. Simulation analysis of removal of elliptic orbit space debris using ground-based laser[J]. Acta Aeronauticaet Astronautica Sinica, 2013, 34(9): 2064-2073. http://d.old.wanfangdata.com.cn/Periodical/hkxb201309007

    [7] 常浩, 金星, 周伟静.纳秒激光烧蚀铝等离子体羽流膨胀特性实验[J].红外与激光工程, 2013, 42(增刊): 43-46. http://d.old.wanfangdata.com.cn/Periodical/hwyjggc2013z1009

    CHANG Hao, JIN Xing, ZHOU Weijing. Experiment research on plasma plume expansion induced by nanosecond laser ablation Al[J].Infrared and Laser Engineering, 2013, 42(S1): 43-46. http://d.old.wanfangdata.com.cn/Periodical/hwyjggc2013z1009

    [8] 鲁建业, 王军, 马玉刚, 等.纯净靶激光等离子体力学特性的理论模拟[J].光学精密工程, 2004, 12(5): 550-554. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc200405016

    LU Jianye, WANG Jun, MA Yugang, et al. Theoretical simulations of the mechanical characteristics of laser induced plasma for monatomic target[J]. Optics and Precision Engineering, 2004, 12(5): 550-554. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc200405016

    [9] 韩威华, 甘庆波, 何洋, 等.天基激光清理低轨空间碎片的最佳角度分析与过程设计[J].航空学报, 2015, 36(3): 749-756. http://d.old.wanfangdata.com.cn/Periodical/hkxb201503005

    HAN Weihua, GAN Qingbo, HE Yang, et al. Optimal direction and a process design of removing low earth orbit debris with space-based laser[J]. Acta Aeronautics et Astronautics Sinica, 2015, 36(3): 749-756. http://d.old.wanfangdata.com.cn/Periodical/hkxb201503005

    [10]

    SCHALL W O. Laser radiation for cleaning space debris from lower earth orbits[J]. Journal of Spacecraft and Rockets, 2002, 39(1): 81-91. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=060793aeab20818fe8aecc11fad0370c

    [11] 方英武, 赵尚弘, 杨丽薇, 等.地基激光辐照近地轨道小尺度空间碎片作用规律研究[J].红外与激光工程, 2016, 45(2): 229002 (6). http://d.old.wanfangdata.com.cn/Periodical/hwyjggc201602002

    FANG Yingwu, ZHAO Shanghong, YANG Liwe, et al. Research on action rules of ground-based laser irradiating small scale space debris in LEO[J]. Infrared and Laser Engineering, 2016, 45(2): 229002(6). http://d.old.wanfangdata.com.cn/Periodical/hwyjggc201602002

    [12]

    PHIPPS C R, BAKER K L, LIBBY S B, et al. Removing orbital debris with lasers[J]. Advances in Space Research, 2012, 49:1283-1300. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_1110.3835

    [13]

    PHIPPS C R, BIRKAN M, BOHN W, et al. Review: laser ablation propulsion[J]. Journal of Propulsion and Power, 2010, 26(4): 609-637. http://d.old.wanfangdata.com.cn/Periodical/zgyxllx201711029

    [14] 李欣荣, 周天文, 孙琦.长脉冲高能激光对金属靶材烧蚀实验研究[J].应用光学, 2009, 30(1):148-152. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yygx200901034

    LI Xinrong, ZHOU Tianwen, SUN Qi. Ablation of metal target materials by long-pulse high energy laser[J]. Journal of Applied Optics, 2009.30(1):148-152. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yygx200901034

    [15]

    LIEDAHL D A, Rubenchik A, Libby S B, et al. Pulsed laser interactions with space debris: Target shape effects[J]. Advances in Space Research, 2013, 52:895-915. http://cn.bing.com/academic/profile?id=8d51c985c636000280fc870e7c185aba&encoded=0&v=paper_preview&mkt=zh-cn

  • 期刊类型引用(7)

    1. 王凯,李得睿,向升,程斌. 基于光斑投影3D-DIC的动态液面波高场测量方法研究. 力学学报. 2023(10): 2427-2438 . 百度学术
    2. 杜连续,金永. 小波变换轮廓术测量精度影响因素的研究. 机械与电子. 2022(03): 13-16 . 百度学术
    3. 张申华,杨延西. 非静态物体的光栅图像投影3D测量方法. 电子测量与仪器学报. 2022(08): 158-166 . 百度学术
    4. 夏桂书,吴虹星,魏永超,武兴焜. 旋转状态下的航空发动机叶片形变测量. 中国测试. 2022(12): 40-44 . 百度学术
    5. 李雪,陶曾杰,雷琳. 傅里叶变换轮廓术在通信原理课程的教学应用. 实验室研究与探索. 2022(11): 140-144 . 百度学术
    6. 夏桂书,武兴焜,魏永超,吴虹星. FTP动态测量航空发动机叶片三维型面. 中国测试. 2021(03): 30-35 . 百度学术
    7. 朱荣刚,周健杰,张敏涛,陈鹏. 基于傅里叶变换迭代的条纹延拓方法研究. 金陵科技学院学报. 2021(03): 22-27 . 百度学术

    其他类型引用(15)

图(6)  /  表(2)
计量
  • 文章访问数:  782
  • HTML全文浏览量:  232
  • PDF下载量:  190
  • 被引次数: 22
出版历程
  • 收稿日期:  2017-09-28
  • 修回日期:  2017-11-12
  • 刊出日期:  2018-02-28

目录

    /

    返回文章
    返回