天基平台激光清除小尺度空间碎片降轨特性研究

Research on de-orbiting characteristic of small scale space debris removal using space-based laser

  • 摘要: 通过建立空间碎片自旋与非自旋模型,分析了天基激光作用下碎片速度的变化规律,在此基础上研究了激光辐照作用下空间碎片的变轨模型。通过仿真分析空间碎片的近地点与远地点高度的变化量在碎片运行轨道不同位置与高能脉冲激光作用的变化规律,对比分析激光在不同辐照角度下与碎片作用时的降轨清理效果。研究结果表明:天基激光清除空间碎片存在最佳作用区域,降轨清理的最佳位置在初始真近角f=120°和f=240°位置附近;激光作用碎片的辐照角度对碎片的降轨清理效果有较大影响,激光在不同辐照角度与碎片作用时的降轨清理效果相对碎片轨道椭圆主轴具有对称性。

     

    Abstract: The models of the spinning and non-spinning space debris were established, the velocity variation of the space debris ablating by space-based laser was analyzed, and the orbit maneuver of the space debris irradiating by laser was modeled and investigated. The variations of the perigee and apogee altitudes in different locations of the space debris orbit under the irradiation of high-energy pulse laser were simulated and analyzed, and the debris removal efficiency by using laser in different irradiation angles was analyzed relatively. The simulation results show that, there is an optimal action area of removal of space debris using space-based laser. The initial true anomaly of debris for most effective de-orbiting effect is around 120° and 240°. The angle of laser irradiating debris has a great influence on removal efficiency. The removal efficiency of laser irradiating debris in different angles has the symmetry relative to the elliptical axis of debris orbit.

     

/

返回文章
返回